
Using Semantic Web Technologies for Policy Management on the Web∗

Lalana Kagal and Tim Berners-Lee and Dan Connolly and Daniel Weitzner
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Lab
Cambridge, MA 02139

{lkagal, timbl, connolly, djweitzner}@csail.mit.edu

Abstract

With policy management becoming popular as a means of
providing flexible Web security, the number of policy lan-
guages being proposed for the Web is constantly increasing.
We recognize the importance of policies for securing the Web
and believe that the future will only bring more policy lan-
guages. We do not, however, believe that users should be
forced to conform the description of their policy relationships
to a single standard policy language. Instead there should be
a way of encompassing different policy languages and sup-
porting heterogeneous policy systems. As a step in this di-
rection, we propose Rein, a policy framework grounded in
Semantic Web technologies, which leverages the distributed
nature and linkability of the Web to provide Web-based policy
management. Rein provides ontologies for describing policy
domains in a decentralized manner and provides an engine
for reasoning over these descriptions, both of which can be
used to develop domain and policy language specific security
systems. We describe the Rein policy framework and discuss
how a Rein policy management systems can be developed for
access control in an online photo sharing application.

Introduction
The Web is one of the most important ways for disseminat-
ing information across global boundaries. Though it is a
simple and convenient framework for searching and retriev-
ing information, the Web suffers from the lack of easy-to-
use and adaptable security required by website administra-
tors, application developers, and people in charge of web
content. Several approaches for access control to Web re-
sources have been proposed such as WS-Policy (IBMet al.
2006), PeerTrust (Gavriloaieet al. 2004), Rei (Kagal, Finin,
& Joshi 2003), and XACML (Lockhart, Parducci, & Ander-
son 2005). Each approach has its own policy language that
can be used to develop policies over shared ontologies. This
causes not only an interoperability issue between domains
that use different languages but also forces users to conform
their description of their policy relationships to the system’s
policy language. Instead of requiring all users to adopt a sin-
gle policy language for their policy requirements, we instead

∗This work is sponsored by the National Science Foundation
Awards 0427275 and 0524481.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

leverage the power of the Semantic Web to reason across the
various languages (such as RDF-S (Brickley & Guha 2004),
OWL (Bechhoferet al. 2004), and rule languages) that are
used to describe policies. Rein is a unifying framework that
will help the Web preserve maximum expressiveness for pol-
icy communities by allowing users to define policies in their
own languages but still use the same mechanisms for de-
ploying policy domains.

Rein is a Web-based policy management framework,
which exploits the inherently decentralized and open nature
of the Web by allowing policies, meta-policies, and policy
languages to be combined, extended, and otherwise han-
dled in the same scalable, modular manner as are any Web
resources. Resources, their policies and meta-policies, the
policy languages used, and their relationships together form
Rein policy networks. Rein allows entities in these policy
networks to be located on local or remote Web servers as
long as they are accessible via Hypertext Transfer Proto-
col (HTTP). It also allows these entities to be defined in
terms of one other using their Uniform Resource Identifiers
(URI) (Berners-Lee, Fielding, & Masinter 2005). Rein pol-
icy networks are described using Rein ontologies and these
distributed but linked descriptions are collected off the Web
by the Rein engine and are reasoned over to provide policy
decisions.

Reindoes not propose a single policy languagefor de-
scribing policies. It allows every user to potentially have her
own policy language or re-use an existing language and if
required, a meta policy. Rein provides ontologies for de-
scribing Rein policy networks and provides mechanisms for
reasoning over them. The ontologies and reasoning mech-
anisms work with any policy language and domain knowl-
edge defined in RDF-S, OWL, or supported rule languages.

Though authentication is an important part of access con-
trol, Rein does not enforce a particular kind of authentication
but leaves it up to the individual policy to describe the au-
thentication it requires, if any. This allows domains to either
combine authentication and authorization into their access
control policies or decouple them and provide the authenti-
cation information (such as statements in Security Assertion
Markup Language (SAML) (Mishraet al. 2006)) as input
to the authorization policies. We have developed examples
that combine authentication and authorization and rely on
simple cryptography techniques and other examples that use

Web Server

Rein Policy
Network

Owner

Client
GuardImage

1. Use ImgPolicy
for Image

2. Request
for Image

3. Retrieve
ImgPolicy

LEGEND

interaction

Resource to be
secured

Figure 1: Access Control Model.The main participants in
an access control system developed using the Rein frame-
work include the resource being protected, the Web server
that hosts the resource, the owner of the resource, the guard
on the Web server that enforces the policy defined by the
owner, and the client who wishes to access the resource.

public keys and signed credentials. The Rein framework
can support SAML statements that are translated into RDF.
In future work, we plan to investigate integrating Open ID
(Fitzpatrick 2005), which is a decentralized authentication
mechanism, with the Rein framework.

Some of the main contributions of Rein include, (i) Rein
is a Web-based approach to representing and reasoning over
policies for Web resources. It promotes extensibility and
reusability as it allows every policy to use its own policy
language and meta-policy or re-use or extend existing pol-
icy languages and meta-policies. (ii) Rein is flexible with re-
spect to how sophisticated or expressive policies can be. (iii)
Rein provides a unified mechanism for reasoning over Rein
policy networks to make policy decisions. (iv) Rein supports
compartmentalized policy development by allowing a divi-
sion of responsibilities between different parties with dif-
ferent roles and skills. Designing policy languages, writ-
ing meta-policies associated with policy languages, devel-
oping policies, and enforcing policies are all modular tasks.
This allows policy developers to make frequent changes at
their high level of understanding without requiring any other
changes to the system. (v) All information required to make
the policy decision is described within or linked to from the
entities in the resource’s policy network making our frame-
work self-describing.

Access Control Model
There are several participants in an access control policy sys-
tem based on Rein - the resource to be protected, the Web
server that hosts the resource, the owner of the resource,

meta-policy

Resource

policy

Request
(RDF/XML or N3)

resource

access

Credential or URI defined in
domain specific ontology

requester

policy
language

Policy
(OWL/RDFS/

N3 rules)

Policy Language
(OWL/RDFS)

LEGEND

Class defined
in Rein

property

Access Class or Property
defined in Policy

Language

Meta Policy
(OWL/RDFS/

N3 rules)

ans

Answer

isA

isA

Domain/Policy
language specific

Rein Policy Network Ontology

Rein Request Ontology InValid

Valid

Figure 2: Rein Ontology.This ontology includes the Rein
Policy Network Ontology, which describes the relationships
between resources, policies, meta-policies, and policy lan-
guages, and the Request class, which is used to perform
queries over Rein Policy Networks.

the guard on the Web server that enforces the policy defined
by the owner, and the client or requester who wishes to ac-
cess the resource. Figure 1 illustrates the interactions be-
tween these participants. The owner informs the guard of
the access control policies that need to be enforced for the
resources she owns. We assume that the owner is authenti-
cated by the Web server and is able to specify policies only
for resources that it owns. The guard stores the relationship
between a resource and its policy(ies). The resource’s policy
network, which consists of its policies, policy language(s),
and meta policies, can be distributed across the Web. When
a resource is requested, the guard collects the description of
it’s policy network and reasons over it to decide whether to
permit access.

This model allows the enforcement mechanism to be
completely separated from the policy. The owner of a re-
source can define her own policy and policy language or re-
use/extend existing ones. The policy and its language need
not be hosted on or controlled by the same Web server as the
Web resource. This allows the policy and other entities in
the resource’s policy network to change as often as required
without requiring any modification to rest of the framework.

Rein Framework
Rein is a Web-based framework for representing and reason-
ing over policies in domains that use different policy lan-
guages and domain knowledge described in RDF-S, OWL,

and supported rule languages. It consists of two main parts,
(i) a set of ontologies for describing Rein policy networks
and access requests, and (ii) a reasoning engine that accepts
requests for resources in Rein policy networks and decides
whether or not the request is valid.

Ontologies
The Rein framework includes the Rein policy network ontol-
ogy and the Rein request ontology to model information in
the system. These ontologies are illustrated in Figure 2. The
Rein ontology is a relatively small base and includes a few
powerful terms that define the access control domain, allow
the architecture to be decentralized and web-like, and allow
policies and policy languages to be re-used and extended.

The Rein policy network ontology is made up of three
properties that are used to link policy network entities that
are located on local or remote hosts via HTTP. Thepol-
icy property is used to associate resources with their access
control policies. Thepolicy-languageproperty is used by
a policy to refer to the policy language(s) it uses, and the
meta-policyproperty is used by a policy language to refer to
rules that can be used for further policy reasoning. A pol-
icy language is represented as an RDF-S or OWL ontology.
A meta-policy is a set of rules defined over concepts in a
policy language and domain ontologies and is used for addi-
tional policy processing such as setting defaults and dynamic
conflict resolution. Meta policies are described in one of the
supported rule languages. A policy is defined in a policy lan-
guage and over domain knowledge. It can be a set of RDF-S
or OWL instances or a set of rules in a supported rule lan-
guage. A resource could but need not have a description in a
machine understandable representation. If it does have a de-
scription, it can be used as part of the domain knowledge and
policies can be written over this information. Every request
for a resource is evaluated against all the policies that control
it. If a policy uses a policy language that has a meta-policy,
then that meta-policy applies to the policy. Policies, pol-
icy languages, and meta-policies can be serialized either in
RDF/XML (Beckett 2004) or N3 (Berners-Lee 1998) or de-
scribed in a supported rule language. An example of a Rein
policy network described using Rein ontologies is shown in
Figure 3.

The Requestclass is a way to query a Rein policy net-
work. Requestsare created by users or by the guard from
the original user requests to verify whether the request for
the resource is valid. TheRequestclass has four properties
- requesterdefines the entity making the request,resourceis
the Web resource, service, or action being requested,access
is a term (class or property) defined in the policy language
for access control (e.g. ispermitted, forbidden, can-write,
ReadPermission), andansthat is the response set by the en-
gine. Though theresourceproperty is usually set to the URI
of the resource being requested, therequesterproperty is a
set of properties or credentials of the requester because the
identity of the requester might not always be meaningful in
open environments such as the Web (Kagal 2004). The Rein
reasoning engine can be easily modified to handle additional
properties for a request including environmental conditions
and attributes of the resources.

Web Server

Web Server

Web Server

Web Server

Web Server

Web Server

policy

policy-language

familypol.owl
[OWL]

pol-lang.rdf
[RDFS]

policy

troop-policy.n3
[N3]

policy-language

meta-policy

pl-meta.n3
[N3 rules]

Image1

Image2

Image3

Image4
Guard

policy

policyabc.rdf
[RDF]

policy-language

other-lang.owl
[OWL]

LEGEND

Rein or OWL
property

Resource to
be secured

Policy network
entity

owl:imports

policy

policy

Figure 3: Example of a Rein Policy Network.Rein pol-
icy networks are formed by inter-related resources, policies,
policy languages, and meta-policies that can be hosted on
different Web servers and that can be extended and re-used
as required.

Reasoning Engine
The Rein reasoning engine accepts requests for resources
in Rein policy networks, collects relevant information from
these networks, and answers questions about access rights of
the requester. It includes a reasoner for RDF-S, OWL, and a
reasoning engine for each supported rule language (e.g. N3
rules and RuleML). It is used by guards for controlling ac-
cess to resources in Rein policy networks. It can also be used
by clients to generate proofs of why their request should be
allowed. It accepts as input an instance ofRequestand the
URI of the policies that describe the access requirements of
the resource. It is assumed that the guard is aware of the
policies that act on each resource it protects and that these
policies are accessible via HTTP.

The engine processes aRequestby retrieving each policy
associated with the requested resource and reasoning over its
network including its policies, policy languages, and meta-
policies. It also adds information provided by theRequest
such as credentials, certificates, and other attributes of the
requester. The Rein engine assumes that all information re-
quired to make the policy decision is provided by or linked
to from the Request or the policy as it is a self-describing
framework. Once the engine collects all the relevant in-
formation, it reasons over it using the RDF-S reasoner, the
OWL reasoner, and the reasoning engines of the supported
rule languages. It then checks whether the inferences in-
clude a meaningful relationship between theresourceprop-
erty, theaccessproperty, and an instance that has the same

subset of properties and credentials as those defined by the
requesterproperty. The reasoning engine has a pre-defined
list of possible relationships that it looks for. Finding rela-
tionships is possible because we restrict policy languages,
which define these relationships, to RDF-S or OWL and the
reasoning engine understands the semantics of RDF-S and
OWL. For example, if ’foo’ is theaccessproperty some ex-
amples of relationships include (i) requester is an instance
with foo as a property and the resource as its value, (ii) foo
is a class and an instance of foo has requester and resource
as values of two of its properties, and (iii) resource is an in-
stance with foo as a property and the requester as its value.
If the engine is able to find an appropriate relationship, then
the engine infers that theRequestis valid and sets theans
property of theRequestto Valid. The engine can also be
run in a certain mode to generate a proof for why a certain
Requestis valid.

Using Rein
Rein is a way of representing and reasoning over policies but
does not include any policy enforcement. We propose that
the Rein engine be used either by a guard controlling access
to the resources or by the client to generate a proof which
is checked by the guard. We propose three ways in which
policies for Web resources can be enforced:

• Approach where Rein is used by guard : When a client
makes a request for a resource, the guard checks if there is
a policy associated with the resource. If there is a policy,
the guard displays a form that asks the client to provide
her (digital) credentials and any other information that is
required by the policy. On receiving the submitted form,
the guard parses the input and asks the Rein engine to
check whether the information provided meet the policy
requirements of the requested resource. If the request is
valid, the guard allows the request to go through otherwise
it returns an error. An analogy for this form of policy
enforcement is the process of joining a library or applying
for a passport. All the information required by the policy
(library or embassy) is provided on a form. The client
needs to fill out the form and provide a driver’s license
or passport in order to meet the server’s policy. In this
approach, it is possible for the policy to be private, and the
guard can iteratively reveal portions of the policy based on
the client’s credentials. A possible Web implementation
includes a client proxy and a modified Apache web server.
The Apache web server accepts HTTP requests for the
resources it protects and knows which policy applies to
each protected resource. It generates the appropriate Rein
Requestfrom the credentials sent along with the request
for the resource and executes the Rein engine. It decides
whether or not to permit the request based on the reply
from the Rein engine.

• Approach where Rein is used by client : In this approach,
when a client requests a resource which has an associated
policy, the server returns a link to the portion of the pol-
icy that the client needs to satisfy. The client collects the
required credentials and uses the Rein engine to generate
a proof for why she should have access. Once the engine

has generated a proof, the client sends this proof to the
guard. The guard checks the proof and if it is valid, the
client is allowed to access the resource. Parts of the policy
have to be disclosed to the client in this case. The library
analogy applies to this case as well. The library provides
the policy which states that you have to prove that you
have a valid driving license and a local address to join the
library. By showing her license, a person can prove that
she has the right to join the library. This approach is be-
ing used in the Policy Aware Web project (Kolovskiet al.
2005). The implementation will be similar to the one de-
scribed above except that the server will first return the
policy to be satisfied and the client proxy will reply with
the proof. The guard will check the proof and will per-
mit or deny the request depending on whether the proof is
valid or not.

• Hybrid Approach : An example of this kind is the process
of obtaining a discount at a car rental agency. Car rental
agencies usually have discounts for various things such
as AAA membership, corporate negotiations, coupons,
and promotions. When a client asks for a discount, the
car rental agency cannot (and usually does not) ask for
all possible credentials such as AAA memberships, proof
of affiliation with companies that they have negotiated a
discount with, coupons in newspapers, etc. In this case,
certain parts of the policy are public through the client’s
web of relationships. The client’s company will inform
her of possible discounts with car rental companies, AAA
will inform her about their discounts, particular newspa-
pers will advertise the car rental agency’s coupons. The
client will obtain a proof of why she should get a discount
by putting together different rules and policies from dif-
ferent domains (company, AAA, the car rental agency)
and provide it to the car rental agency. We believe that
this will be the most common case on the Web - some
portions of policies will be public and some will be pri-
vate. A client will have to collect information from trusted
sources to develop a proof using Rein for why she should
have access to a certain resource or get a certain discount.
In order to support this scenario, a general policy frame-
work such as Rein is required that is able to work with
different kinds of policy languages and unifying mech-
anisms. Though statements in RDF-S, OWL, and rules
in supported rule languages can be loaded and reasoned
over in the Rein engine, we have not worked out exactly
how this hybrid approach would be supported in the Rein
framework.

Current Implementation
The basic requirements of the Rein framework include (i)
reasoners for RDF-S and OWL, (ii) an engine for the sup-
ported rule language(s), and (iii) a programming language
capable of accessing the Web and of working with the cho-
sen reasoners and engines. The conceptual design of Rein
allows it to be implemented in several different ways us-
ing different programming languages (e.g. python, Java,
C++) , reasoners (e.g. Pellet (Parsia & Sirin 2004), Jena
(http://jena.sourceforge.net/), cwm (Berners-

Lee 2000)), and rule languages (e.g. RuleML (Ballet al.
2005), N3 rules(Berners-Leeet al. 2005), Flora (Yang,
Kifer, & Zhao 2003)). We have implemented it in one pos-
sible way using python, cwm, and N3 rules.

The current implementation of Rein relies on N3 seman-
tics and cwm functionality to integrate and reason over Rein
policy networks. N3 rules allow policies to access the Web
and objectively check the contents and inferences of docu-
ments, without having to believe everything they say. This
is especially important in open untrusted environments such
as the web because a certain web page may be trusted for a
certain bit of information but not all the information on the
page is trusted. There are several useful cwm builtins such
as cryptography, string functionality, and math operators that
are useful for specifying policies. The N3 rule language has
the expressivity we required and is convenient to read and
write.

We have defined the Rein ontologies in RDF-S and have
developed a Rein reasoning engine in N3 rules. We use cwm
as both a reasoning engine for the supported rule language
(N3 rules) and as a reasoner for the language of develop-
ment. The engine includes the Euler rules (De Roo 2005)
for reasoning over RDF-S and a subset of OWL. The en-
gine accepts as input aRequestinstance and the relation-
ship between the requested resource and its policies. The
input can be serialized either in RDF/XML (Beckett 2004)
or N3 (Berners-Lee 1998). On receiving the input, the en-
gine parses it to get the attributes of the requester and the
requested resource. The engine uses cwm builtins (Berners-
Lee 2000) to read in the associated policies, policy lan-
guages, and meta-policies (if any). It then reasons over
the files defined in RDF-S or OWL using the Euler rules
whereas files defined in N3 and N3 rules are handled by
cwm. The results of the policy are passed to the meta-policy
and the final result is output by stating whether theRequestis
Valid or Invalid. This output can be serialized in RDF/XML
or N3 and is used by the guard to decide whether to allow or
deny the request. However, as the Rein engine can be used
both by the guard and the client, the engine has another out-
put. The engine can be run in the–whymode, which causes
it to output a proof in N3 for why aRequestis Valid. The
engine can be accessed by a guard or client through the cwm
command-line interface or its Application Program Interface
(API) in python.

A requirement in the Rein framework is that the guard
needs to know which policies apply to which resources. In
our implementation this can be done in using RDF-S, OWL,
or N3 rules. If RDF-S or OWL is used, policies can be as-
sociated with resources using individual statements for each
resource or using restrictions. The use of N3 rules allows
policies to be assigned to resources grouped by common at-
tributes.

The framework makes some assumptions in order to
achieve policy language independence: (i) The policy lan-
guage is defined in RDF-S or OWL. (ii) Policies are defined
over policy languages and domain knowledge and are de-
scribed in RDF-S, OWL, or a supported rule language. (iii)
It is possible to reason over the policy and infer whether a
relationship betweenaccess, resource, and an instance with

Example Request for a Troop photo

Partial Friend of a Friend Ontology in RDF-S

maker

Person

PersonalProfileDoc

name schoolHomepage

hexdigest

homepage

Literal

Literal

Resource

Resource

knows
Person

ExampleRequest isA Request

access

PermittedToView

requester

http://example.org/
pic123.jpg

resource

Blank Node []

secret

1c0eea4e9f295b1e43
a6a62cc7058037

maker

http://example.org/
foaf.rdf

LEGEND

Class

property

Figure 4: FOAF Ontology and Example Request.The foaf
ontology is used to describe the person who is a member of
the troop. The example request illustrates how values are
assigned to Request properties in order to query the Rein
engine.

the same credentials and information as therequesteris en-
tailed. (iv) The programming language used provides acces-
sibility to the Web. (v) The guard is aware of which policies
apply to which resource. (vi) The guard is able to generate
a validRequestinstance from the HTTP request sent by the
client.

Example : Photo sharing domain
The Web has made sharing photos much easier with online
applications such as Flickr (http://flickr.com) and
Zoomr (http://zoomr.com). Though they provide sev-
eral photo management features such as uploading, tagging,
searching for, and leaving comments on photos, their secu-
rity mechanism is fairly simple. In most of these applica-
tions, an image owner can define groups of users and assign
photo permissions to them. The owner can decide whether
a photo or set of photos is visible to the public in general
or to one or more of her groups. This is basically Role
Based Access Control (RBAC) (Ferraiolo & Kuhn 1992;
Sandhu 1998) where users are assigned to groups (or roles)
and groups (or roles) are given permissions.

In order to give an owner of photos more control over
who can access her photos and to provide more expressivity

Troop ontology in RDF-S

Policy Language/Ontology in RDF-S

PolicyClass
PermittedToView

ForbiddenToView

subclassOf

subclassOf

Member Photo

user picture

prefModality Modality

Positive Negative

subclassOf subclassOf

Troop

event

Member

name

Literal Event

member

Jamboree Meeting

subclassOf subclassOf

attendee

Photolocation

Person

subclassOf

secret Literal

LEGEND

Class

property

Figure 5: Policy Language and Troop Ontology.The policy
language consists of two classes PermittedToView and For-
biddenToView, both of which have two properties, photo and
user. It also includes a property for resolving policy con-
flicts, prefModality. The troop ontology is used to describe
information about the troop, its members, and its activities.

in defining these requirements, we suggest that Rein be used
for policy management in these photo sharing applications.
Instead of associating photos with groups by enumerating
group members, the owner will associate declarative poli-
cies by informing the guard of the URIs of these policies.
The owner can use RDF-S, OWL, or N3 rules to associate
policies with photos. Some examples of this association in-
clude (i) all my photos are controlled by PolicyA, (ii) all
photos with certain tags are controlled by PolicyB, and (iii)
all photos without a certain tag are controlled by PolicyC.

Access control policies need not be hosted on the photo
server and can be described in RDF-S, OWL, or N3 rules.
The owner can define her own policy and language or
use/extend someone else’s policy or policy language. If an-
other user has a policy that states that MIT graduate stu-
dents are allowed to access his pictures, then by using this
policy, the owner gives MIT graduate students access to her
pictures without worrying about how to authenticate the stu-
dents. The owner can also use only the policy language and
define her own policy that states that UMBC students are
allowed to access her pictures taken at the award ceremony.

A user who wishes to access a certain photo or set of pho-
tos that meet a certain search criteria will send an HTTP
request. If the photo or photos is protected by a policy, the
guard will return an HTTP 401 response, which means that
the request requires user authentication. This response will
be intercepted by a proxy on the client side. The proxy will

log:
semantics

troop42.rdf

LEGEND

property

isa
Request

resource

requester

[]

secret

crypto:
md5

PHOTO

SECRET

TXT

log:
includes

isA

Photo

location []

isA
Meeting

REQ

F

USER
foaf:maker

PG

log:
semantics

G

log:includes

attendee

hexdigest

[]

isA

PermittedToView

picture
user

property

Variable

[Blank Node]THEN

IF

Figure 6: Girl Scout Policy.The policy implements a sim-
ple authentication scheme in which every member has a se-
cret key on her foaf page. In order to prove that she is
a member of the girl scout troop, the requester must pro-
vide a secret password whose MD5 hash is the value of the
hexdigest property on a member’s foaf page. The policy
states that only members who attended a certain meeting
can view pictures of the meeting. Cwm builtin functions,
log:semantics and log:includes, are used to access Web re-
sources and check whether one graph is a subset of another.

get together the credentials and information required based
on the user’s preferences and resubmit the request. The
guard will use the information sent to form a ReinRequest
and query the Rein engine with it. If the Rein engine infers
that theRequestis valid, the request is allowed to go through
and the photo is returned to the client.

As an example, consider members of a girl scout troop
who use an online photo sharing application to host their
photos. The troop has a website that lists its members, their
Friend of A Friend (foaf) (Brickley & Miller 2006) pages,
how long they have been members, etc. The troop mem-
bers upload photos of their meetings, jamboree, and award
ceremonies. Please refer to Figure 4 for the foaf ontology
and an example of aRequest. The troop has a policy lan-
guage and troop ontology in RDF-S. The troop ontology is
used to describe information about the troop, its members,
and its activities and this information also available on the
troop website. Troop members upload photos and define
policies for them using the policy language and troop on-
tology. The troop’s policy language consists of two classes
PermittedToViewandForbiddenToViewclass both of which
have two properties,pictureanduser. The policy language
also includes a property for defining meta-policies called

prefModality, which is a property associated with photos.
This property is used to resolve conflicts in the policy i.e.
if a requester is both permitted and prohibited from access-
ing a picture, theprefModalityproperty is used by the meta-
policy to decide which one policy overrides the other. Figure
5 shows the policy language being used and the troop ontol-
ogy.

The girl scout troop has a rule-based policy in N3 for
defining the following rules: (i) only members who attended
a certain meeting can view pictures of the meeting, (ii) mem-
bers who missed the last Jamboree cannot see any pictures.
This example implements a simple authentication scheme in
which every member has a secret key on her foaf page. In
order to prove that she is a member of the girl scout troop,
the requester must provide a password whose MD5 hash is
the value of thehexdigestproperty on a member’s foaf page.
The meta policy is also defined in N3 rules and resolves any
conflicts using the preferred modality of the requested photo.
If there is a conflict, the meta-policy checks theprefModality
associated with the photo. If theprefModalityis Positive, the
permission is the final result, otherwise the prohibition over-
rides. Please refer to Figure 6 for a pictorial representation
of a portion of this policy.

Related Work
Proof Carrying Authorization (PCA) proposes that the un-
derlying framework of a distributed authorization system be
a higher-order logic and that different domains in this sys-
tem use different application-specific logics that are subsets
of the higher-order logic (Appel & Felten 1999). They also
propose that clients develop proofs of access using these ap-
plication specific logics and send them to servers to validate.
Rein draws inspiration from PCA but modifies it to lever-
age the distributed nature and linkability of the Web and the
power of Semantic Web technologies.

PeerTrust provides a mechanism for gaining access to
secure information/services on the web by using seman-
tic annotations, policies and automated trust negotiation
(Gavriloaie et al. 2004). In PeerTrust, trust is estab-
lished incrementally through an iterative process which in-
volves gradually disclosing credentials and requests for cre-
dentials. PeerTrust’s policy language for expressing access
control policies is based on definite Horn clauses. PeerTrust
is an interesting approach that expects both parties to ex-
change credentials in order to trust each other and assumes
that policies are private. This is appropriate for highly se-
cure resources such as ecommerce sites, however, our work
is aimed at controlling access to resources such as pictures,
blogs, and calendar entries. However, Rein is a representa-
tion framework for policies and does not include a protocol
for policy exchange or enforcement. We would like to sup-
port an iterative disclosure approach like PeerTrust within
the Rein framework in the future.

Within the Rein framework, policy languages such as
Extensible Access Control Markup Language (XACML)
(Lockhart, Parducci, & Anderson 2005), Platform for Pri-
vacy Preferences (P3P) (Cranoret al. 2002), KAoS (Us-
zok et al. 2004), and Rei (Kagal 2004) can be considered
domain-specific policy languages. In fact, if their semantics

can be represented in RDF-S, OWL, or N3 rules, it will be
possible to integrate them into the current Rein implementa-
tion.

Future Work
The querying mechanism usingRequestsis very simple and
only checks whether a there is a relationship between the
requester, resource, and access properties. We would like to
extend that to allow different kinds of queries such as who is
permitted to perform a printing kind of service, what kind of
resources can John access, can all faculty members access
the faculty printer etc.

Though a resource can have several policies acting on it,
we currently support only disjunction of policies - if the re-
quest is valid in any one of the policies, it is considered valid.
Rein does, however, include both disjunction and conjunc-
tion of rules within policies. We will look into supporting
conjunction of policy decisions as well as defining meta-
policies over multiple policies in the future.

As part of our future work, we will also look into rep-
resenting policies in proposed rule languages for the Web
including RuleML (Ballet al. 2005), SWRL (Horrockset
al. 2004), and Rule Interchange Format (RIF) (W3C RIF
Working Group 2006) and use these rule languages to pro-
vide functionality similar to Rein.

Rein does not take possible attacks such as denial of ser-
vice and replay attacks into consideration. This is some-
thing we would like to address. Another problem is that
though cwm provides a way to trust certain pieces of infor-
mation for certain purposes, it does not provide sandboxing
for reasoning over untrusted rules. We believe some kind of
mechanism will be required, so that the computing resources
available to untrusted rules are restricted.

Summary
Rein is a policy framework for the Web grounded in Seman-
tic Web technologies. It provides ontologies for describing
diverse policy scenarios and mechanisms for reasoning over
them, both of which can be configured to work with differ-
ent policy languages and domain knowledge in RDF-S and
OWL. Rein also includesdelegation mechanisms, indepen-
dent of the policy language and domain information, that
support both delegation of authorization and trust (Kagalet
al. 2006). Rein ontologies have been defined in RDF-S and
the framework has been implemented using python, cwm,
and N3 rules.

References
Appel, A. W., and Felten, E. W. 1999. Proof-Carrying
Authentication. In6th ACM Conference on Computer and
Communications Security.

Ball, M.; Boley, H.; Hirtle, D.; Mei, J.; and Spencer, B.
2005. Implementing RuleML Using Schemas, Translators,
and Bidirectional Interpreters. InW3C Workshop on Rule
Languages for Interoperability.

Bechhofer, S.; van Harmelen, F.; Hendler, J.; Horrocks,
I.; McGuinness, D. L.; Patel-Schneider, P. F.; and Stein,

L. A. 2004. OWL Web Ontology Language Reference,
W3C Recommendation.http://www.w3.org/TR/
owl-ref/ .
Beckett, D. 2004. RDF/XML Syntax Specification
(Revised). W3C Recommendation.http://www.w3.
org/TR/rdf-syntax-grammar/ .
Berners-Lee, T.; Connolly, D.; Prud’homeaux, E.; and
Scharf, Y. 2005. Experience with N3 rules. InW3C Work-
shop on Rule Languages for Interoperability.
Berners-Lee, T.; Fielding, R.; and Masinter, L. 2005. Uni-
form Resource Identifier (URI).http://www.ietf.
org/rfc/rfc3986.txt .
Berners-Lee, T. 1998. Notation 3 (N3) A readable RDF
Syntax. http://www.w3.org/DesignIssues/
Notation3.html .
Berners-Lee, T. 2000. Cwm : General-purpose Data Pro-
cessor for the Semantic Web.http://www.w3.org/
2000/10/swap/doc/cwm .
Brickley, D., and Guha, R. V. 2004. RDF Vocabulary De-
scription Language 1.0: RDF Schema, W3C Recommen-
dation.http://www.w3.org/TR/rdf-schema/ .
Brickley, D., and Miller, L. 2006. Friend of a Friend
(FOAF) project. http://www.foaf-project.org/.
Cranor, L.; Langheinrich, M.; Marchiori, M.; Presler-
Marshall, M.; and Reagle, J. 2002. The Platform for Pri-
vacy Preferences 1.0 (P3P1.0) Specification. W3C Recom-
mendation.http://www.w3.org/TR/P3P/ .
De Roo, J. 2005. Euler proof mechanism.http://www.
agfa.com/w3c/euler/ .
Ferraiolo, D., and Kuhn, R. 1992. Role-based access
controls. In15th NIST-NCSC National Computer Security
Conference, 554–563.
Fitzpatrick, B. 2005. OpenID: an actually distributed iden-
tity system.http://openid.net/ .
Gavriloaie, R.; Nejdl, W.; Olmedilla, D.; Seamons, K.; and
Winslett, M. 2004. No Registration Needed: How to Use
Declarative Policies and Negotiation to Access Sensitive
Resources on the Semantic Web. In1st European Semantic
Web Symposium, May. 2004, Heraklion, Greece.
Horrocks, I.; Patel-Schneider, P. F.; Boley, H.; Tabet, S.;
Grosof, B.; and Dean, M. 2004. SWRL: Semantic Web
Rule Language Combining OWL and RuleML.http:
//www.daml.org/rules/proposal/ .
IBM; Systems, B.; Microsoft; AG, S.; Software, S.;
and VeriSign. 2006. Web Services Policy Frame-
work (WS-Policy). http://www-106.ibm.com/
developerworks/library/specification/
ws-polfram .
Kagal, L.; Berners-Lee, T.; Connolly, D.; and Weitzner, D.
2006. Self-describing Delegation Networks for the Web.
In IEEE Workshop on Policy for Distributed Systems and
Networks (POLICY 2006).
Kagal, L.; Finin, T.; and Joshi, A. 2003. A Policy Based
Approach to Security for the Semantic Web. InSecond Int.
Semantic Web Conference (ISWC2003), Sanibel Island FL.

Kagal, L. 2004. A Policy-Based Approach to Governing
Autonomous Behavior in Distributed Environments. Dis-
sertation. University of Maryland, Baltimore County.
Kolovski, V.; Katz, Y.; Hendler, J.; Weitzner, D.; and
Berners-Lee, T. 2005. Towards a Policy-Aware Web. In
Semantic Web and Policy Workshop at the 4th International
Semantic Web Conference.
Lockhart, H.; Parducci, B.; and Anderson, A. 2005. OASIS
eXtensible Access Control Markup Language (XACML).
http://www.oasis-open.org/committees/
tc-home.php .
Mishra, P.; Lockhart, H.; Anderson, S.; Hodges,
J.; and Maler, E. 2006. OASIS Security Ser-
vices (Security Assertions Markup Language) .
http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=security .
Parsia, B., and Sirin, E. 2004. Pellet : An OWL DL Rea-
soner. InInternational Semantic Web Conference, Poster
Session.
Sandhu, R. S. 1998. Role-based access control. In
Zerkowitz, M., ed.,Advances in Computers, volume 48.
Academic Press.
Uszok, A.; Bradshaw, J. M.; Jeffers, R.; Johnson, M.; Tate,
A.; Dalton, J.; and Aitken, S. 2004. Policy and Con-
tract Management for Semantic Web Services. InAAAI
Spring Symposium, First International Semantic Web Ser-
vices Symposium.
W3C RIF Working Group. 2006. Rule in-
terchange format. http://www.w3.org/2005/
rules/Overview.html .
Yang, G.; Kifer, M.; and Zhao, C. 2003. FLORA-2: A
Rule-Based Knowledge Representation and Inference In-
frastructure for the Semantic Web. InSecond International
Conference on Ontologies, Databases and Applications of
Semantics (ODBASE).

