
Theory and Practice of Logic Programming 1

N3Logic: A Logical Framework For the World
Wide Web

Tim Berners-Lee, Dan Connolly, Lalana Kagal, Yosi Scharf
Computer Science and Artificial Intelligence lab

Massachusetts Institute of Technology

{timbl, connolly, lkagal, syosi}@csail.mit.edu

Jim Hendler
Rensselaer Polytechnic Institute

hendler@cs.rpi.edu

Abstract

The Semantic Web drives towards the use of the Web for interacting with logically in-
terconnected data. Through knowledge models such as Resource Description Framework
(RDF), the Semantic Web provides a unifying representation of richly structured data.
Adding logic to the Web implies the use of rules to make inferences, choose courses of
action, and answer questions. This logic must be powerful enough to describe complex
properties of objects but not so powerful that agents can be tricked by being asked to
consider a paradox. The Web has several characteristics that can lead to problems when
existing logics are used, in particular, the inconsistencies that inevitably arise due to the
openness of the Web, where anyone can assert anything. N3Logic is a logic that allows
rules to be expressed in a Web environment. It extends RDF with syntax for nested graphs
and quantified variables and with predicates for implication and accessing resources on the
Web, and functions including cryptographic, string, math. The main goal of N3Logic is to
be a minimal extension to the RDF data model such that the same language can be used
for logic and data. In this paper, we describe N3Logic and illustrate through examples
why it is an appropriate logic for the Web.

KEYWORDS: logic, Web, Semantic Web, scoped negation, quoting, RDF, N3

1 Introduction

The Semantic Web is an enhancement of the World Wide Web to broaden its shar-
ing capacity to application data sharing as well as human-focused data sharing.
Through RDF the Semantic Web provides a unifying representation of richly struc-
tured data. And through the Web, application developers can share these data
representations so that their applications can make “decisions” on the basis of
combining the many different kinds of data published on the Web.

RDF builds on the fundamental pointer mechanism of the Web; the Uniform
Resource Identifier (URI). In the initial incarnation of the Web, URIs were generally
thought to refer to documents and parts of documents via hypertext anchors. The

2 T. Berners-Lee

Semantic Web makes it explicit that URIs can be used to name anything – from
abstract concepts (“color”) to physical objects (“the building in which MIT’s CSAIL
personnel work”) to electronic objects (“the machine code that implements the
Linux operating system”). RDF uses URIs to give names to relationships between
objects as well as to the objects themselves.

The abstract representation of RDF (Carroll and Klyne 2004) is a directed labeled
graph – i.e. nodes and arcs. A subset of the nodes are URIs; these are “named”
nodes. Other nodes may not be identifying URIs but the graph can still describe
properties of such nodes including relationships with other named and un-named
nodes. The properties and relationships are the edges in the graph. Every edge type
has its own label and these same edge type labels themselves can be used to name
other nodes in the graph that represent the edge type. This permits properties of
edge types themselves to be represented in an RDF graph.

N3 is a compact and readable alternative to RDF’s XML syntax (Berners-Lee
1998). N3 allows RDF to be expressed but emphasizes readability and symmetry.
It also allows quoting or statements to be made about statements. This quoting
feature allows users to distinguish between what they believe to be true and what
someone else including a website states or believes.

N3Logic uses N3 syntax and extends RDF with a vocabulary of predicates. N3
aims to do for logical information what RDF does for data: to provide a common
data model and a common syntax, so that extensions of the language are made
simply by defining new terms in an ontology. Declarative programming languages
such as Scheme (Steele and Sussman) already do this. However, they differ in their
choice of pairs rather than the RDF binary relational model for data, and lack
the use of universal identifiers as symbols. N3Logic allows rules to be integrated
smoothly with RDF and provides certain essential built-in functions that allow
information from the Web to be accessed and reasoned over. The main goal of
N3Logic is to make a minimal extension to the RDF data model so the same
language could be used for logic and data, and to do so in a way that is compatible
with the architectural principles of the Web

In this paper, we discuss the features of N3Logic with the help of examples and
describe its informal semantics.

2 N3Logic Overview

One of the main motivations of N3Logic is to be useful as a tool in the open
Web environment. The Web contains many sources of information, with different
characteristics and relationships to any given reader. Whereas a closed system may
be built based on a single knowledge base of believed facts, an open Web-based
system exists in an unbounded sea of interconnected information resources. This
requires that an entity be aware of the provenance of information and responsible
for its disposition. A language for use in this environment typically requires the
ability to express which document or message asserts what. We found that quoting
provides a pragmatic solution to this. However, quotation and reference, with its
inevitable possibility of direct or indirect self-reference, if added directly to first

N3Logic: A Logical Framework For the World Wide Web 3

order logic presents problems such as paradox traps. To avoid this, N3Logic has
deliberately been kept to limited expressive power: it currently contains no general
first order negation.

Another goal of N3Logic is that information, such as but not limited to rules,
which requires greater expressive power than the RDF graph, should be sharable
in the same way as RDF can be shared. This means that one person should be able
to express knowledge in N3Logic for a certain purpose, and later independently
someone else can reuse that knowledge for a different unforeseen purpose. As the
context of the latter use is unknown, this prevents us from making implicit closed
assumptions about the total set of knowledge in the system as a whole.

Further, users of the Web have the ability to express new knowledge without
affecting systems that are already built. We’ve chosen to adopt a monotonicity
requirement for N3Logic because we find it scales well. This implies that the ad-
dition of new information from elsewhere cannot silently change the meaning of
the original knowledge, though it might cause an inconsistency by contradicting
the old information. The non-monotonicity of many existing systems follows from
a form of negation as failure (NAF) in which a sentence is deemed false if it not
held within (or, derivable from) the current knowledge base. It is this concept of
current knowledge base, which is a variable quantity, and the ability to indirectly
make reference to it which causes the non-monotonicity. In N3Logic, while a cur-
rent knowledge base is a fine concept, there is no ability to make references to it
implicitly in the negative. The negation provided is called Scoped Negation As Fail-
ure (SNAF) and is the ability for a specific given document (or, essentially, some
abstract formula) to objectively determine whether or not it holds, or allows one to
derive, a given fact. However, negated forms of many of the built-in functions are
available. (Please refer to Sections 4.3 and 5.5 for more information about scoped
negation and built-in functions)

3 Motivating Example

We describe a Web-based scenario that will be used to illustrate the different fea-
tures of N3 logic. Consider a conference management system that handles different
aspects of registration for conferences. It allows people to register by specifying
their names, addresses, affiliations, and their Friend-of-a-Friend (foaf) page. A foaf
page includes information such as the organization the registrant works for, her/his
current and past projects, and her/his interests (Brickley and Miller 1999; Dumbill
2002). Using this information, the conference management system goes out onto
the Web and retrieves relevant information. By reasoning over this information it
is able to make inferences about the registrant such as whether the registrant is a
vegetarian or not, which workshops she/he would be most interested in, whether
she/he is a member of a certain professional organization, and whether the reg-
istrant is a student. This allows the conference management system to provide
greater support in the registration process by figuring out what registration fees
are applicable, whether to order vegetarian meals, and by suggesting appropriate

4 T. Berners-Lee

workshops. In the following sections, we define N3Logic in detail, using the example
of this conference system to illustrate key features.

4 Notions and Terminology

N3 is based on the abstract syntax of RDF. The concrete syntax of N3 includes a
number of other abbreviations. Please refer to the Appendix 11 or to the N3 Primer
(Berners-Lee 2005) for a tutorial introduction.

4.1 Basic Concepts from RDF

• The atomic formulas in the RDF abstract syntax are called “triples”; they
are analogous to one 3-place holds(s, p, o) predicate. For example:

<http://dig.csail.mit.edu/2006/Papers/TPLP/example/exconf#ExConf>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://example.org/conf#Conference>

• RDF also has conjunctions of formulas. URI terms can be abbreviated using
namespaces, and the keyword ’a’ is short for <http://www.w3.org/1999/

02/22-rdf-syntax-ns#type>.

@prefix conf: <http://example.org/conf#> .

@prefix : <http://dig.csail.mit.edu/2006/Papers/TPLP/example/exconf#> .

ExConf a conf:Conference .

ExConf conf:homepage <http://www.l3s.de/~olmedilla/events/MTW06_Workshop.html>.

ExConf conf:registrant Judy.

Judy a foaf:Person.

<http://dig.csail.mit.edu/2005/09/rein/examples/judy-foaf.rdf> foaf:maker Judy.

• RDF also has literal terms; for example:

ExConf conf:eventName "WWW2006 Workshop on Models of Trust for the Web".

ExConf conf:numOfRegistrants 65.

• Finally, RDF abstract syntax allows existential quantification. Certain syn-
taxes (e.g. “[“...”]”) allow an existential variable to be introduced without
having to name it: this is known as a blank node. The following are equival-
ent:

@forSome X. j:Joe foaf:knows X. X foaf:name "Fred" .

j:Joe foaf:knows [foaf:name "Fred"] .

4.2 N3 Extension to RDF

N3 extends the abstract syntax of RDF in two ways:

• It has all of the terms of RDF plus quoted formulas. For example:

N3Logic: A Logical Framework For the World Wide Web 5

b:mary says { j:Joe foaf:schoolHomepage <http://example.edu> } .

• It has all of the formulas of RDF plus universally quantified formulas. In
simple cases, the @forAll quantifier can be left implicit. The following are
equivalent:

@forAll X. { X a Man } log:implies { X a Mortal }.

{ ?X a Man } log:implies { ?X a Mortal }.

The N3 example below declares namespace prefixes and defines ExConf an in-
stance of the Conference class as defined in conf namespace.

@keywords a.

@prefix conf: <http://example.org/conf#> .

@prefix : <http://dig.csail.mit.edu/2006/Papers/TPLP/example/exconf#> .

ExConf a conf:Conference;

conf:eventName "WWW2006 Workshop on Models of Trust for the Web";

conf:acronym "MTW06";

conf:address "mtw@www.org";

conf:homepage <http://www.l3s.de/~olmedilla/events/MTW06_Workshop.html> .

4.3 N3Logic Vocabulary

N3Logic uses the N3 syntax and also includes a set of predicates. Its vocabulary is
union of the N3 syntax and the set of URI references defined in the log: (http://
www.w3.org/2000/10/swap/log#), crypto: (http://www.w3.org/2000/10/swap/
crypto#), list: (http://www.w3.org/2000/10/swap/list#), math: (http://www.
w3.org/2000/10/swap/math#), os: (http://www.w3.org/2000/10/swap/os#), string:
(http://www.w3.org/2000/10/swap/string#), and time: (http://www.w3.org/
2000/10/swap/time#) namespaces as shown in Table 4.3.

log:conclusion, log:content, log:includes, log:semantics, log:notIncludes, log:supports
... crypto:md5, crypto:sign, crypto:verify ... list:in, list:last ... math:lessThan,
math:greaterThan ... os:argv, os:environ ... string:contains, string:endsWith,
string:scrape ... time:day, time:hour, time:minute ...

Table 1. Some N3Logic predicates

While N3Logic properties can be used simply as ground facts in a database, is
very useful to take advantage of the fact that in fact they can be calculated. N3Logic
includes axiom schemas for each of these terms; reasoners can use these axioms to
evaluate formulas and bind variables. These are called built-in functions and they
can be used to provide a variety of functionality, for example the crypto:sha1 built-
in allows the object to be computed as the SHA-1 hash of the subject.

6 T. Berners-Lee

5 Informal Semantics of N3Logic

Various vocabularies, notably RDFS and OWL, have defined RDF predicates with
logical semantics, such as rdfs:range, and owl:sameAs, etc. Of these, N3 logic uses
rdf:type and owl:sameAs, and defines further predicates to allow rules, web access
and built-in calculated functions. N3Logic extends RDF in two ways (i) a syntax
namely N3, and (2) a vocabulary of new predicates, which can be used to talk about
the provenance of information, contents of documents on the Web, and provide
a variety of useful functionality such as string, cryptographic, and mathematic
functions.

N3Logic allows statements to be made about, and to query, other statements such
as the content of data in information resources on the Web. Formulae provide the
ability to represent such sets of statements. To allow statements about them, some
of the relationships defined are given URIs so that these statements and queries
can be written in N3.

The fact that the rule language and the data language are the same gives a
certain simplicity (there is only one syntax) and completeness (rules can operate
on themselves, anything written in N3 can be queried in N3). This would be broken
if a special syntax were added for built-in functions and operators. Instead, these
are simply represented as RDF properties. Rules may have full N3, even with nested
graphs, on both sides of the implication. This gives a form of completeness as rules
can generate rules.

5.1 Relationship with RDF, RDFS, and OWL

N3 syntax allows RDF to be expressed, however, it does not make use of the full
RDF vocabulary.

• In N3 the keyword “a” is a shorthand for rdf:type and can be replaced with
a direct use of the full URI symbol for rdf:type.

• The shorthand notation of “=” refers to owl:sameAs. It is used to state that
the subject and object are equal.

• N3 uses rdf:List, rdf:first, rdf:rest, and rdf:nil for describing lists. Implemen-
tations may treat list as a data type rather than just a ladder of rdf:first and
rdf:rest properties. The use of rdf:first and rdf:rest can be seen as a reification
of the list datatype. This use of lists requires more axioms than are actually
defined in the RDF specification. These axioms, described in N3, are given
below

— Existence of lists

(?X).

{ ?L rdf:rest [] } => { [] rdf:first ?X; rdf:rest ?L }.

— Uniqueness of lists

{ ?L1 rdf:first ?X; rdf:rest ?R.

?L1 rdf:first ?X; rdf:rest ?R. } => { ?L1 = ?L2 }.

N3Logic: A Logical Framework For the World Wide Web 7

— Uniqueness of the rdf:first and rdf:rest of a list

{ ?S rdf:first ?O1, ?O2 } => { ?O1 = ?O2 }.

{ ?S rdf:rest ?O1, ?O2 } => { ?O1 = ?O2 }.

• The semantics of RDFS can be easily expressed in N3Logic. A set of N3Logic
rules for defining rdf:domain and rdf:range are as follows

{ ?S [s:domain ?C] ?O } => { ?S a ?C } .

{ ?S [s:range ?C] ?O } => { ?O a ?C } .

{ ?S a [s:subClassOf ?C] } => { ?S a ?C } .

5.2 Quoted N3 Formulae

Quoting is an important feature provided by N3. Various forms of literal value
are allowed in RDF graphs, however the RDF standard does not itself provide
for another RDF graph to be a data value. Remedying this allows one to express
relationships between graphs, for example that a given graph is the RDF content of
a particular document. Every RDF graph is a subclass of N3 formula. A quoted N3
formula is an N3 formula enclosed in braces “{“ “}”. Some examples of N3 formulae
and quoted N3 formulae are shown in Table 2.

Note that, however, substitution of equal (owl:sameAs) terms occurring in a
formula does not take place within nested quoted formulae: formulae are not refer-
entially transparent.

In our conference management example, we assume that there are several admin-
istrators. Each administrator specifies a list of people who may not register due to
some reason. The example below states that Joe says that Peter is not permitted
to register. Even though Peter is equal to John, it does not imply that Joe says
that John is not permitted to register. This is an example of a quoted N3 formula.

j:Joe says { mit:Peter policy:notpermitted conf:Register }.

mit:Peter = cmu:John.

5.3 Dereferencing URIs

The Web is exposed as a mapping between URIs and the information returned when
such a URI is dereferenced, using appropriate protocols. In N3Logic, the information
resource is identified by a symbol, which is in fact is its URI. The information is
represented in formulae, the information retrieved is also represented as a formula.
Not all information on the Web is, of course in N3. If we assume that N3 is the
interlingua, then from the point of view of this system, the semantics of a document
is exactly what can be expressed in N3.

log:semantics is a logical property that represents the relation between a docu-
ment and the logical expression which represents its meaning expressed as N3. The
log:semantics of an N3 document is the formula achieved by parsing the represen-
tation of the document.

8 T. Berners-Lee

N3 formula : c1 is a Car as defined in the “ex” namespace and its color is green.

@keywords a.

@prefix ex: <http://example.org/car.n3#> .

c1 a ex:Car;

ex:color "green".

N3 formula : The semantics of <http://www.example.org/myfoaf.rdf> as expressed
in N3 is stored into a variable, F.

@forAll F.

<http://www.example.org/myfoaf.rdf> log:semantics F .

Quoted N3 formula : Joe believes that Peter is a graduate student.

j:Joe believes { mit:Peter a school:GraduateStudent } .

Quoted N3 Formula : Mary believes that Joe believes that Peter is a graduate student.

Mary believes { j:Joe believes { mit:Peter a school:GraduateStudent } } .

Table 2. N3 Formula Examples

In order to access a foaf file and store its N3 representation to a variable,
log:semantics is used in the following manner

<http://www.example.org/myfoaf.rdf> log:semantics ?F.

The Architecture of the World Wide Web defines algorithms by which a machine
can determine representations of document given its symbol - URI. For a represen-
tation in N3, this is the formula which corresponds to the document production
of the grammar. For a representation in RDF/XML, it is the formula which is the
entire graph parsed. For any other languages, it may be calculated as long as a
specification exists that defines the equivalent N3 semantics for files in that lan-
guage. The N3 semantics of other languages for Web documents such as GRDDL
(Hazaël-Massieux and Connolly 2005) and RDF/A (Adida and Birbeck 2006) may
be defined so that they are also calculable.

The N3 formula of a document is not the semantics of the document in any
absolute sense. It is the semantics expressed in N3. In turn, the full semantics of an
N3 formula are grounded in the definitions of the properties and classes used by the
formula. In the HTTP space, in which URIs are minted by an authority, definitive
information about those definitions may be found by dereferencing the URIs. This
information may be in natural language, in some machine-processable logic, or a
mixture.

N3Logic: A Logical Framework For the World Wide Web 9

URI

"http://www.example.org/foaf.rdf"

Resource

FOAF File

String

"@keywords a.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.

me a foaf:Person;
 foaf:family_name "Kagal";
 foaf:givenname "Lalana";
 foaf:workplaceHomepage <http://
www.csail.mit.edu/index.php> . "

log:content

log:uri

log:
parsedAsN3

N3

log:semantics

me
rdf:type

foaf:
Person

foaf:
famiy_name

"Kagal"foaf:
givenname

"Lalana"
foaf:

givenname

<http://www.csail.mit.edu/index.php>

Fig. 1. Relationship between resource, URI, string, N3 representation, and logic
properties.

Other logical properties related to dereferencing include log:content, log:parsedAsN3,
log:N3String, and log:uri.

• log:content of a document, is the string which was returned as the document
contents when the URI of the resource was looked up.

• log:parsedAsN3 is the logical property that returns the formula got by parsing
the string as a Notation3 document.

• log:N3String returns the string which expresses a certain formula in N3.
• log:uri is the URI of a resource. Normal logic processing should not look at

URIs but in some cases one needs to. Though a URI itself has semantics and
can be used to obtain additional information, log:uri must be used carefully
because it is a level-breaker: it lets an N3 system look at its infrastructure. It
is a function which one can evaluate either way: resource to URI or URI to
resource.

<http://example.org/> log:uri "http://example.org/"

Figure 1 illustrates the relationship between URI, resource, string, N3 represen-
tation, and the different logical properties.

5.4 Rules

N3 extends RDF with variables and nested graphs to enable the descriptions of
rules. In its blank nodes (items in the graph not directly identified by a URI)

10 T. Berners-Lee

an RDF graph has a form of existential variable. Extending the language to allow
variables existentially or universally quantified over a graph allows N3 to be used for
a form of logic. The drive for this initially was so that, given variables, a rule is just
a relation between two graphs. Variables are defined such that when substitution
occurs in a graph, it also occurs in any nested graph.

The log:implies property expresses a rule, its subject being the antecedent graph,
and the object being the consequent graph. It relates two formulae, expressing
implication. A statement using log:implies cannot be calculated. It is not a built-in
function, but a predicate which allows the expression of a rule. N3 allows blank
nodes in the conclusion of a rule, hence allowing the creation of new objects.

Continuing with our earlier example, though anyone can specify a list of people
who cannot register, the conference management system only trusts administrators
of the system with this information.

@forAll A, X.

{ A a conf:Administrator.

A conf:says { X policy:notpermitted conf:Register }.

} => { X policy:notpermitted conf:Register }.

To do some inference within another set of rules, a useful relationship is log:conclusion.
It is a property between a formula, and the result of running any rules in the for-
mula on all the data recursively - the deductive closure. To make up the initial
formula, log:conjunction can be used to merge a list of formulae.

For example, if the statements made by administrators is in file <statements.n3>,
the list of administrators in file <admin.rdf>, and the rule described about in
<rule.n3>, then we can use log:conjunction and log:conclusion to decide whether
or not someone should be permitted to register. log:supports is a relationship that
combines log:conclusion and log:includes to check whether the conclusion of the for-
mula includes a certain subgraph. (Please refer to section 5.5 for more information
about log:includes).

@forAll S, A, R, C, X.

{ <statements.n3> log:semantics S.

<admin.rdf> log:semantics A.

<rule.n3> log:semantics R.

(S A R) log:conjunction C.

C log:supports { X policy:notpermitted conf:Register }.

} => { X policy:notpermitted conf:Register }.

As it is possible to have blank nodes in the conclusion of a rule, log:conclusion and
log:supports are undecidable and may run forever. However, it is possible to restrict
N3Logic to a decidable subset language in which blank nodes are not allowed in
the conclusion.

5.5 Graph Functions

The logic function, log:includes, checks whether one formula can be N3-derived
from another formula. (Please refer to Section 5.7 for more information about N3-

N3Logic: A Logical Framework For the World Wide Web 11

N3

@prefix conf: <http://example.org/conf#> .
@prefix policy: <http://example.org/policy#> .

Joe conf:said
 { mit:Peter policy:notpermitted conf:Register }.

log:includes

N3

{ Joe conf:said { mit:Peter policy:notpermitted
conf:Register } }

N3

{ mit:Peter policy:notpermitted conf:Register }

log:notIncludes

Fig. 2. Quoting and its relation to log:includes and log:notIncludes

derivation) Together, log:semantics and log:includes allow rules to access the Web,
and to objectively check the contents of documents, without having to load them
and believe everything they say.

The following rule states that if the home page of a registrant says that she is a
vegetarian, then she/he is a vegetarian. We find the URI of her homepage on her
foaf page.

@forAll X, FOAF, F, H, HS.

{ ExConf conf:registrant X.

FOAF foaf:maker X.

FOAF log:semantics F.

F log:includes { X foaf:homepage H }.

H log:semantics HS.

HS log:includes { X a ex:Vegetarian }

} => { X a ex:Vegetarian}.

Whereas some datasets (such as a list of members of a club) are definitively
complete, others (such as a set of temperature measurements) are not. This aspect
of the Semantic Web makes negation as failure meaningless unless it is associated
to a specific dataset. As a formula is of finite size, it can be tested for what it does
not say. As a form of negation, log:notIncludes is completely monotonic. It can be
evaluated by a mathematical calculation on the value of the two terms: no other
knowledge gained can influence the result. This is the scoped negation as failure
mentioned in the introduction. This is not a non-monotonic negation as failure.

Figure 2 shows how log:includes and log:notIncludes relate to quoting.
We continue with our example. We assume that every school website has a prop-

erty linking to its directory. The directory provides information about people in-

12 T. Berners-Lee

cluding their foaf pages, their designation (such as student, faculty, associate), and
their email address. Below we have a rule that states if the directory of the school
does not specify that the person under consideration is a student, the system gives
the person the academic rate but not the student rate.

@forAll X, FOAF, F, H, HS, D, DS.

{ ExConf conf:registrant X.

FOAF foaf:maker X.

FOAF log:semantics F.

F log:includes { X foaf:schoolHomepage H }.

H log:semantics HS.

HS log:includes { H school:directory D }.

D log:semantics DS.

DS log:notIncludes { X a school:Student }

} => { X conf:registrationRate conf:AcademicRate }.

The effect of a default with an explicit domain is achieved with log:notIncludes.
Defaults can be handled by first running rules to work out everything that is speci-
fied, and then doing a log:notIncludes on the result as shown in the example above.

5.6 Built-ins

N3Logic also provides other built-ins for additional functionality. Some examples
include

• crypto functions - md5, sign, and verify
• xmath functions - cos, greaterThan, notGreaterThan, and difference
• os functions for retrieving environment information - argv, baseAbsolute, and

baseRelative
• string functions - concatenation, matches, and startsWith
• time functions - dayOfWeek, gmTime, and localTime

The following example describes a rule that states that papers submitted to the
conference that are not more than 6 pages are valid if authorized by a program
chair of the conference.

@prefix math: <http://www.w3.org/2000/10/swap/math#> .

@forAll PAPER, LEN, CHAIR.

{ ExConf conf:submittedPaper PAPER.

PAPER conf:pageLength LEN.

LEN math:notGreaterThan 6.

PAPER conf:authorized CHAIR.

CHAIR conf:chair ExConf.

} => { PAPER a conf:ValidPaper }.

N3Logic: A Logical Framework For the World Wide Web 13

5.7 N3 Derivation

N3-derivation is not aimed at moving all the way to the powerful inference capa-
bilities of an expressive logic, but rather extends textual inclusion to include some
simple inferences that are standard in most logics. These include:

• Conjunction Elimination (CE): For any formulae A and B, given conjunction
A and B, then A follows, and B follows.

• Conjunction Introduction (CI): For any formulae A and B, given A, and
given B, then the conjunction A and B follows.

• Universal Elimination (UE): Given any formula A, a universal variable x that
is used in A, and a ground term t, At/x follows. i.e. @forAll x, A and ground
term t, then At/x follows.

• Existential Introduction (EI): Given any formula A containing a ground term
t, and an existential variable v that does not occur in A, then Ax/t follows.

• Variable Renaming (VR): For any formula A, and variables x and x’, A =
A’ where A’ is a formula derived by Subst(x/x’, A).

N3 derivation is any finite number of applications of of CE, CI, UE, EI or VR.
An N3 derivation operator T is defined as any operator which is the successive
application of any sequence (possibly empty) of such operators. A formula F n3-
derives a formula T F, which implies that by a combination of CE, EI, UE and VR,
T F logically follows from F.

As RDF Graph is a subclass of N3 formula, if F and G are RDF graphs, only CE
and EI apply and n3-derivation reduces to simple entailment from RDF Semantics.

The implementation of built-in functions is not in general required for any im-
plementation of N3Logic, as they can always soundly be treated as ground facts.
However, their usefulness is derived from their implementation. For example, { 1
math:negation -1 } is derived by calculation. Like other RDF properties, the set
is designed to be extensible, enabling others to use URIs for new functions. When
a triple can be evaluated, or a variable bound because its predicate is a built-in
function, then the derivation of the statement is said to be by calculated derivation.
N3Logic-derivation is N3-derivation with modus ponens and calculated derivation.

5.8 Symmetry of Triples

When designing an ontology in RDF the direction chosen for a given property is
arbitrary - one can either define “parent” or “child”, “employee” or “employer”.
Our philosophy (from the Enquire design of 1980 (Berners-Lee 1980)) is that one
should not favor one way over another. On the other hand, one should not encourage
people to declare both a property and its inverse. Therefore, a design choice in N3
is to allow forward and backward links to be expressed with equal ease. It does this
by providing keywords “is” and “of” that allow one to reverse the direction of the
description of a triple. This also enables the serialization of any acyclic graphs with
blank nodes without requiring them to have generated node identifiers.

14 T. Berners-Lee

5.9 Extensibility

The extensibility of RDF is deliberate so that a document may draw on predicates
from many sources. The statement {s p o} expresses that the relationship denoted
by p holds between the things denoted by s and o. The meaning of the statement
{s p o} in general is defined by any specification for p. The Architecture of the
Web specifies informally how information about the relation can be discovered (Ja-
cobs and Walsh 2004). In a similar fashion, N3Logic allows external predicates -
predicates not defined within N3Logic - to be used. The definitions of these exter-
nal predicates can be discovered by looking up their URI on the Web and used as
long as their semantics are defined in N3Logic. Clearly a system which includes fur-
ther logical predicates, beyond those defined in N3Logic, whose meaning introduces
greater logical expressiveness would change the properties of the logic.

By having rules and data in the same languages, N3Logic provides simplicity in
syntax and completeness as rules can operate on themselves and anything written
in N3 can be queried in N3. A rule engine, when analyzing a rule prior to running
it, can treat specially those properties it knows as calculable functions which occur
in the antecedent. This allows N3 to be used to develop specific languages such
as query languages. For example, we can create a language for expressing graph
differences and updates by simply defining two new properties, diff:insertion and
diff:deletion (Berners-Lee and Connolly 2004). These properties provide a way to
uniquely identify what is changing and a way to distinguish between the pieces
added and those subtracted.

In the following example, everyone who is paying a student rate, will also be
given accommodation in the dormitory but will not be given a ticket to attend the
social event of the conference.

@forAll X.

{ X conf:registrationRate conf:StudentRate }

diff:insertion { X conf:accommodation conf:Dormitory };

diff:deletion { X conf:ticket conf:SocialEvent } .

In many languages similar to N3, there is a risk of ambiguity as to whether a
naked alphanumeric string is a keyword or an identifier. Serious version management
problems occur when new keywords are added to a language, changing things which
were identifiers into keywords. N3 is designed to be extended in the future. For this
reason, an N3 document can declare which keywords it uses without the “@” sign.
This allows N3 to be extended without the danger that existing documents be
incorrectly interpreted by future systems, or future documents by existing systems.

6 N3Logic Example: Access control policy

We extend our conference management system example with a policy for controlling
access to pictures that were taken during the conference. This policy states that only
people who registered for the conference can view pictures taken at the conference.
During the registration process, the system records registrant’s foaf pages. In order

N3Logic: A Logical Framework For the World Wide Web 15

to prove that they have registered for the conference, users must be able to prove
ownership of a registered foaf page. This can be done either using a decentralized
authentication mechanism such as Open ID (Foundation) or using a mechanism
by which users must present a secret key whose hash is on their foaf page. In this
policy, we use the latter. A user request consists of her secret key and the URI of the
picture being requested. If the picture is one of the pictures taken at the conference
and the secret key is the digest of the session:hexdigest value on a registered foaf
page, then the request is considered valid and the picture is returned to the user.
For the entire working example, please refer to http://dig.csail.mit.edu/2006/

Papers/TPLP/example/.

@forAll REQ, PHOTO, WHO, FOAF, X, TXT, CONF, C.

{ REQ a rein:Request.

REQ rein:resource PHOTO.

<http://dig.csail.mit.edu/2006/Papers/TPLP/example/exconf.n3> log:semantics C.

C log:includes

{ CONF a conf:Conference. PHOTO a conf:GroupPicture; conf:taken CONF }.

REQ rein:requester WHO.

WHO session:secret ?S.

?S crypto:md5 TXT.

C log:includes

{ CONF conf:registrant X. FOAF foaf:maker X }.

FOAF log:semantics [log:includes

{ FOAF foaf:maker [session:hexdigest TXT] }

].

} => { REQ rein:requester [policy:permitted-to-view PHOTO]. REQ a ValidRequest }.

7 Implementations

We have developed cwm (Berners-Lee 2000) a forward-chained reasoner in python
(pyt) for N3 and N3Logic. It is a general-purpose reasoner for the Semantic Web
that can be used for querying, checking, transforming and filtering information.
Currently, cwm parses RDF/XML, and N3 and its subsets. A number of tools,
for example SWOOP (Kalyanpur et al. 2005), support Turtle (Beckett 2006), a
fragment of N3 that is equivalent to RDF/XML.

Being based on a more expressive logic language adds a host of features to cwm
not available to other RDF processing tools: accessing Web resources, and filtering
RDF graphs after merging them, for example. Since N3Logic is expressive enough
so that positive datalog-like rules can be expressed in it, cwm is able to reason
using a first order logic but without classical negation. Combining this reasoning
functionality with its ability to retrieve documents form the Web as needed, the

16 T. Berners-Lee

system can be considered a reasoner for the Web. It has grown from a proof of
concept application to a popular rule engine, used in major research projects such
as Policy Aware Web (Kolovski et al. 2005; Kagal et al. 2006), and the Technical
Report Automation project at W3C (http://www.w3.org/TR/).

Euler is an inference engine supporting logic based proofs. Unlike cwm, it is a
backward-chaining reasoner enhanced with Euler path detection (Roo 2005).

Pychinko is a Python implementation of the classic Rete pattern matching algo-
rithm (Parsia et al.). Rete has shown to be, in many cases, the most efficient way
to apply rules to a set of facts–the basic functionality of an expert system. Pychinko
employs an optimized implementation of the algorithm to handle facts, expressed
as triples, and process them using a set of N3 rules. Pychinko tries to closely mimic
the features available in Cwm, as it is one of the most widely used rule engines
in the RDF community. Pychinko has proven to be faster than Cwm, however it’s
limitation lies in its expressivity: Pychinko cannot handle most of the cwm built-
ins. It is worth mentioning here that the RETE engine used in Pychinko has been
ported to Cwm - thus Cwm can now boast the same performance improvements.

8 Related Work

Several logics related to N3Logic exist including OWL, Simple Common Logic
(SCL) (Altheim et al. 2005), and Knowledge Interface Format (KIF) (Genesereth
1998). OWL is built on top of RDFS and provides a vocabulary for describing the
characteristics of properties and classes, the relationships between classes, and re-
lationships between properties. OWL is based on Description Logic (Baader et al.
2003), which is a subset of First Order Logic (FOL) (Shapiro 2005). OWL provides
limited expressivity for a Web-like environment as it does not support quantified
variables, rules, or a mechanism to distinguish which document or person asserts
what. KIF is a framework for exchanging of declarative knowledge among hetero-
geneous computer systems. It is a version of first order predicate calculus with
extensions to support non-monotonic reasoning and quoting. The key differences
between KIF and N3Logic are that KIF does not include operators for Web access
and it supports non-monotonic reasoning. SCL is aimed at providing a standard log-
ical interchange language based on XML. It has a higher-order syntax that provides
integration between different representation languages but SCL gives this syntax
a completely first-order semantics. This syntax can be used to provide quoting
functionality. Proof Carrying Authorization (PCA) proposes that the underlying
framework of a distributed authorization system be a higher-order logic and that
different domains in this system use different application-specific logics that are
subsets of the higher-order logic (Appel and Felten 1999). They also propose that
clients develop proofs of access using these application specific logics and send them
to servers to validate. N3Logic draws inspiration from PCA but modifies it to lever-
age the distributed nature and linkability of the Web.

A formal categorization of N3Logic is complicated as it differs from most tra-
ditional logics in expressivity. It is clearly more expressive than Datalog (Gallaire
and Minker 1978) but less expressive than traditional FOL. Much Semantic Web

N3Logic: A Logical Framework For the World Wide Web 17

work uses DL expressivity, and like DL, N3Logic is a subset of FOL, although the
quoting mechanisms provide higher order features (which we believe are actually
limited to FOL in the same manner as SCL). However, unlike DL, N3Logic is not
decidable, limiting expressivity in other ways motivated by the Web considerations
discuss in this paper. As such, developing a formal model theory for N3Logic is
quite challenging, and is the focus of current work.

9 Conclusion

The main goal of N3Logic is to extend the RDF data model, so that the same lan-
guage can be used for logic and data. N3Logic uses the N3 syntax, which provides
quoting, variables, and the implication operator. N3Logic also includes built-in func-
tions that allow rules to access Web resources, define which inference can be drawn
from specific Web documents, and other useful functionality such as mathematic,
cryptographic, and string. In this paper, we described the N3 syntax and give the
informal semantics of N3Logic.

The use of log:notIncludes to allow default reasoning without non-monotonic
behavior achieves a design goal for distributed rule systems. The N3Logic language
has been found to have some useful practical properties. The separation between
the N3 extensions to RDF and the logic properties has allowed N3Logic to be
extended with other properties to provide functionality such as the expression of
graph differences and updates (Berners-Lee and Connolly 2004).

10 Acknowledgements

We are grateful to Vladimir Kolovski, Sean Palmer, Dave Beckett, and Jos de Roo
for feedback on the N3 language resulting from their implementations; to the Data
Access Working Group for feedback resulting from their adoption of N3 syntax for
part of SPARQL grammar; to the RDF working group for their co-operation in
keeping NTriples a subset of N3; and to many in the W3C Semantic Web Inter-
est Group for helpful advice and suggestions. This work is supported in part by
funding from US Defense Advanced Research Projects Agency (DARPA) and Air
Force Research Laboratory, Air Force Materiel Command, USAF, under agreement
number F30602-00-2-0593, Semantic Web Development. This work was also funded
under NSF ITR 04-012.

References

The Official Python Programming Language Website. http://www.python.org/.

Adida, B. and Birbeck, M. 2006. RDF/A Primer 1.0. Embedding RDF in XHTML.
W3C Working Draft. http://www.w3.org/TR/xhtml-rdfa-primer/.

Altheim, M., Anderson, B., Hayes, P., Menzel, C., Sowa, J. F., and Tammet, T.
2005. SCL: Simple Common Logic. http://www.ihmc.us/users/phayes/CL/SCL2004.

html.

Appel, A. W. and Felten, E. W. 1999. Proof-Carrying Authentication. In 6th ACM
Conference on Computer and Communications Security.

18 T. Berners-Lee

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P.,
Eds. 2003. The Description Logic Handbook. Cambridge University Press.

Beckett, D. 2006. Turtle - Terse RDF Triple Language. http://www.dajobe.org/2004/
01/turtle/.

Berners-Lee, T. 1980. ENQUIRE V 1.1 Manual. http://www.w3.org/History/1980/

Enquire/.

Berners-Lee, T. 1998. Notation 3 (N3) A readable RDF Syntax. http://www.w3.org/

DesignIssues/Notation3.html.

Berners-Lee, T. 2000. Cwm : General-purpose Data Processor for the Semantic Web.
http://www.w3.org/2000/10/swap/doc/cwm.

Berners-Lee, T. 2005. Primer: Getting into RDF and Semantic Web using N3. http:

//www.w3.org/2000/10/swap/Primer.

Berners-Lee, T. 2006. N3 BNF. http://www.w3.org/2000/10/swap/grammar/

n3-report.html.

Berners-Lee, T. and Connolly, D. 2004. Delta: an ontology for the distribution of
differences between RDF graphs. http://www.w3.org/DesignIssues/Diff.

Brickley, D. and Miller, L. 1999. Friend of a friend (foaf) project. http://www.

foaf-project.org/.

Carroll, J. J. and Klyne, G. 2004. Resource Description Framework (RDF): Concepts
and Abstract Syntax . Tech. Rep. http://www.w3.org/TR/2004/REC-rdf-concepts-
20040210/, W3C. February.

Dumbill, E. 2002. Finding friends with XML and RDF. http://www-128.ibm.com/

developerworks/xml/library/x-foaf.html.

Foundation, O. OpenID. http://openid.net/.

Gallaire, H. and Minker, J., Eds. 1978. Logic and Data Bases. Perseus Publishing.

Genesereth, M. R. 1998. Knowledge Interchange Format. Draft proposed American
National Standard (dpANS). NCITS.T2/98-004. http://logic.stanford.edu/kif/

dpans.html.

Hazaël-Massieux, D. and Connolly, D. 2005. Gleaning Resource Descriptions
from Dialects of Languages (GRDDL), W3C Team Submission. http://www.w3.org/

TeamSubmission/grddl/.

Jacobs, I. and Walsh, N. 2004. The Architecture of the World Wide Web. W3C Rec-
ommendation. http://www.w3.org/TR/webarch/.

Kagal, L., Berners-Lee, T., Connolly, D., and Weitzner, D. 2006. Using Semantic
Web Technologies for Open Policy Management on the Web. In 21st National Confer-
ence on Artificial Intelligence.

Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B., and Hendler, J. 2005.
Swoop: A ’Web’ Ontology Editing Browser. Journal of Web Semantics Vol 4(2).

Kolovski, V., Katz, Y., Hendler, J., Weitzner, D., and Berners-Lee, T. 2005.
Towards a Policy-Aware Web. In Semantic Web and Policy Workshop at the 4th Inter-
national Semantic Web Conference.

Parsia, B., Katz, Y., and Clark, K. Pychinko: Rete-based RDF friendly rule engine.
http://www.mindswap.org/~katz/pychinko/.

Roo, J. D. 2005. Euler proof mechanism. http://www.agfa.com/w3c/euler/.

Shapiro, S. Fall 2005. Classical Logic. In The Stanford Encyclopedia of Philosophy,
E. N. Zalta, Ed.

Steele, G. L. and Sussman, G. J. Scheme. http://www.swiss.ai.mit.edu/projects/
scheme/.

N3Logic: A Logical Framework For the World Wide Web 19

11 APPENDIX : N3 Concrete Syntax

N3 provides a human-readable syntax for RDF and is a language that uses con-
ventional unix-style punctuation, which is both more easily writable and readable
than the RDF/XML syntax (Berners-Lee 2006). It provides quantified variables
and allows quoting so that statements about statements can be made.

• It provides URI abbreviation using prefixes which are bound to a namespace.

@prefix j: <http://example.org/joe-foaf#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix conf: <http://example.org/conf#> .

@prefix : <http://dig.csail.mit.edu/2006/Papers/TPLP/example/exconf#> .

The prefixes used in the above example are assumed throughout the paper.
• Qualified names using the default namespace have an empty prefix and start

with a colon.

@prefix : <http://dig.csail.mit.edu/2006/Papers/TPLP/example/exconf#> .

ExConf a conf:Conference .

• An N3 formula is comprised of a conjunctive set of triples.
• Triples are formed of terms, which are symbols (URIs), strings, blank nodes,

numeric literals, lists or quoted formulae.
• A triple may be terminated by a period.

ExConf conf:eventName "WWW2006 Workshop on Models of Trust for the Web" .

• The repetition of another object for the same subject and predicate is possible
using a comma “,”

ExConf conf:cochair <http://csail.mit.edu/~lkagal/foaf#me>,

<http://umbc.edu/~finin/foaf#tim>.

• The repetition of another predicate for the same subject is done using a
semicolon “;”

ExConf conf:eventName "WWW2006 Workshop on Models of Trust for the Web",

conf:acronym "MTW06" .

• Blank nodes with certain properties can be defined by just putting the prop-
erties between “[“ and “]”. They can be used in two ways: [] together followed
by the properties or [] around the properties. The following example describes
the same subject in these two ways.

[] conf:homepage <http://www.l3s.de/~olmedilla/events/MTW06_Workshop.html> .

[conf:homepage <http://www.l3s.de/~olmedilla/events/MTW06_Workshop.html>] .

• N3 allows has a special : namespace prefix. An identifier of such a form (e.g.
:xyz) represents an blank node.

20 T. Berners-Lee

• An empty URI reference, which refers to the document it is written in, can be
written using “<>”. The example document declares itself to be a Conference
as defined in the conf namespace.

<> a conf:Conference .

• Quoted formulae allow N3 formulae to be quoted within N3 formulae using
“{“ and “}”. In a quoted N3 formula, s p o, both s and o can be RDF graphs
or N3 formulae.

j:Joe says

{ ex:ExConf conf:homepage <http://www.l3s.de/~olmedilla/events/MTW06_Workshop.html;

conf:eventName "WWW2006 Workshop on Models of Trust for the Web";

conf:acronym "MTW06" } .

• N3 formula can have both existential and universal quantifiers. Existential
variables can be indicated by an @forSome declaration and universal variables
can be indicated by @forAll declarations. ?X is a shorthand notation and
implies universal quantification in the enclosing parent of the current formula.
It can be used without an explicit @forAll declaration. The scope of the
@forAll, which is used to define universal variables, is outside the scope of
any @forSome, which is used to define existential variables. If both universal
and existential quantification are specified for the same context, then the
scope of the universal quantification is outside the scope of the existentials.

• Keywords are a very limited set of alphanumeric strings which are in the
grammar prefixed by an “@” sign. If no @keywords directive is given, all
qualified names need a “:” before them and all keywords except “a”, “is”,
and “of” require an “@”. If the @keywords directive is given, then the given
set of bare strings (without either “:” or “@” before them) are keywords and
the others are qualified names in the default namespace.

• The keywords “a”, “is”, and “of” can be used without an “@” even if the
@keywords directive is not given. The keyword “a” maps to rdf:type whereas
“of” and “is” provide syntactic sugar to describe triples in the reverse direc-
tion such as { object is predicate of subject}.

• The keywords @true and @false are boolean literals.
• Strings are defined within double quotes “ “ such as “Joe Smith” and within

triple double quotes “ “ “ for multi-line values or values containing quote
marks.

• Numerical literals such as integers, floats, and decimals are also supported.
• Comments are identified with “#”. Everything that follows the “#” is ignored

till the end of the line.
• The shorthand => may be used for the implies property defined in the log:

namespace (http://www.w3.org/2000/10/swap/log#). (Please refer to Sec-
tion 5.4 for more information).

• “=” is a shorthand notation for the sameAs property defined in owl: names-
pace (http://www.w3.org/2002/07/owl#). (Please refer to Section 5.1 for
more information).

N3Logic: A Logical Framework For the World Wide Web 21

• N3 supports RDF collections and uses them frequently as ordered containers,
as argument lists to N-ary functions such as crypto:sign in which the subject
is a list of two things, a hash string and a key (containing private and public
parts) and the object is calculated as a signature string by signing the hash
with the key’s private part.
For example, to describe Joe’s interests we would use a list as follows

j:Joe interests ("AI" "Semantic Web" "Logic") .

