RDF - next step

URIs for the relations is important
- common naming (RDF)
- dereferencing! (RDFS, OWL)
Adding the Semantics

URI

- This is an RDF "Triple" (resources can also be URIs)
- Make the URI dereferencible for a machine-readable description
 - That is, put the ontology at that URI!
 - RDFS and OWL are basically XML dialects for this
Adding the Semantics

- Ex: Asserts that email address is a many to one relation (i.e. different people with same email address will be considered equivalent)
 - Can merge multiple FOAF files describing same user from different applications
Adding the Semantics

- RDFS and OWL provide other property restrictions as well
 - Which are properties needed for data modeling, domain vocabularies, etc.
- This is the heart of the Semantic Web
 - Why we talk links, not documents
Why?

• Semantics allows inferencing
 – RDFS allows domain, range mapping
 • :sister a rdfs:class;
 rdfs:range foaf:person;
 rdfs:domain ex:female.
 – OWL adds
 • Property inferencing
 – Symmetric, transitive, 1-1, 1-many, many-1
 – (similar to Entity-Relationshop Modeling)
 • "restricted" Class inferencing
 – The mother of a kitten is a cat (but not all mothers are cats)
 – Cardinality (a baseball team has 9 in the lineup…)
 • Some mapping relations
 – US-sport:soccer owl:sameAs UK-sport:football
Reasoners

• Procedural
 – A special purpose piece of code "doing the right thing"
 • RDFS, some subset of OWL

• Rule-based
 – Map constructs to rules
 • RDFS, many subsets of OWL (almost OWL Lite)
 • Non-OWL applications (cf. CWM& N3 rules)

• Special purpose
 – Subset of FOL optimized for decidable subset
 • OWL DL

• General
 – Full FOL reasoner
 • Beyond OWL
RDF Schema

• (Almost named RDF Vocab Def. Lang)
 – Some archival documents say RDF VDL
 • Luckily it stopped there
 – Graphs => Semantic networks
 • Class, subClassOf, property, subPropertyof, domain and range
 • BUT for the web (URIs!)
 – Also datatypes and literals
 – Also some usability stuff
 • label, comment
 – Defined to be strings with internationalization
RDFS example

http://home.fhtw-berlin.de/~engelh/div/hamster.rdfs
Intro to OWL (ca. 2003)

http://www.w3.org/2003/Talks/0522-webont-hendler/
OWL

- W3C Recommendation
- xmlns:owl=“http://www.w3.org/2002/07/owl#”
- Successor to DAML+OIL
- Three Species
 - OWL Lite
 - OWL DL
 - OWL Full
Language Layers

- **OWL Full**
 - Allow meta-classes etc

- **OWL DL**
 - Negation
 - Disjunction
 - Full Cardinality
 - Enumerated types

- **OWL Light**
 - (sub)classes, individuals
 - (sub)properties, domain, range
 - conjunction
 - (in)equality
 - cardinality 0/1
 - datatypes
 - inverse, transitive, symmetric
 - hasValue
 - someValuesFrom
 - allValuesFrom

- **RDF Schema**

 - Full
 - DL
 - Lite
OWL Lite Features
Equality

• equivalentClass
• equivalentProperty
• sameAs
• differentFrom
• allDifferent
Example

- ZipCode equivalentClass PostalCode

- If zip code and postal code are supposed to be different - e.g. zip is for american addresses and postal is for foreign ones - then we can say they are different

- ZipCode differentFrom PostalCode
 <owl:Class rdf:ID="ZipCode">
 <owl:differentFrom
 rdf:resource="http://example.com/ont.owl#PostalCode/>
 </owl:Class>
Property Characteristics

- **inverseOf**
 - hasParent is the inverseOf hasChild

- **TransitiveProperty**
 - E.g. - ancestorOf - if Bob is an ancestorOf Joe and Joe is an ancestorOf Fred, then Bob is an ancestorOf Fred

- **SymmetricProperty**
 - E.g. if Tom is marriedTo Michelle, then Michelle is marriedTo Tom

- **FunctionalProperty** (unique value)
 - Wine hasMaker - hasMaker is functional (there can be only one)

- **InverseFunctionalProperty**
 - The inverse of a functional property - makesWine is the inverse of hasMaker and is an inverseFunctionalProperty
Restrictions

• Property Type Restrictions
 – allValuesFrom
 • The hasMother property has allValuesFrom the class Woman
 – someValuesFrom
 • The hasChild property has someValuesFrom the class Woman

• Restricted Cardinality (can be 0 or 1 in Lite)
 – minCardinality
 – maxCardinality
 – Cardinality
Local Restrictions on Property Ranges

- Instead of setting a range for a property, each class can have its own range.
- E.g. The range of eats for vegetarians is different than for non-vegetarians.
- Done with subclasses and a restriction.

```xml
<owl:Class rdf:ID="Vegetarian">
  <rdfs:subClassOf>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#eats"/>
      <owl:allValuesFrom rdf:resource="#VegetarianFood"/>
    </owl:Restriction>
  </rdfs:subClassOf>
</owl:Class>
```

...
Versioning

- versionInfo
- priorVersion
- backwardCompatibleWith
- inCompatibleWith
- DeprecatedClass
- DeprecatedProperty
OWL DL and Full
Class Axioms

• one of
 – An enumeration of instances
 – E.g. fromContinent must have a value that is one of the following: Antarctica, N. America, S. America, Africa, Europe, Asia, Australia

• hasValue
 – A property must have a specific instance of a value
 – E.g. a U.S. Citizen’s citizenOf property is restricted to have the value USA
Combinations

- **unionOf (uses ParseType)**
 - E.g. European Union Citizenship is the unionOf the citizenship of the member states

- **intersectionOf (uses ParseType)**
 - E.g. Fire engines are found in the intersection of RedThings and Trucks

- **complementOf (used like subClassOf)**
 - E.g. the complementOf livingThings are all things that are non-living

- **disjointWith (used like subClassOf)**
 - E.g. Man and Woman are disjoint classes
 <owl:Class rdf:ID="Man"/>
 <owl:Class rdf:ID="Woman">
 <owl:disjointWith rdf:resource="#Man"/>
 </owl:Class>
Intersection Example

```xml
<owl:Class>
  <owl:intersectionOf rdf:parseType="Collection">
    <owl:Class>
    </owl:Class>

    <owl:Class>
    </owl:Class>
  </owl:intersectionOf>
</owl:Class>
```
ComplementOf Example

```xml
<owl:Class>
  <owl:complementOf>
    <owl:Class>
      <owl:intersectionOf rdf:parseType="Collection">
        <owl:Class>
          <owl:equivalentClass rdf:resource="#Food"/>
        </owl:Class>
        <owl:Class>
          <owl:equivalentClass rdf:resource="#Meat"/>
        </owl:Class>
      </owl:intersectionOf>
    </owl:Class>
  </owl:complementOf>
</owl:Class>
```
Cardinality

- Cardinality restrictions without limits
Emerging Language

• A subset of OWL that is
 – Tractable
 – Easier syntactically
 – Easily mapped to rules
 – "understandable"
 – Powerful enough to be useful

• Sometimes called "RDFS+" or "OWL Mini"
 – Owl Fast, Owl Prime, Owl Ultralite, OWLET
Vocabulary Comparison Matrix

<table>
<thead>
<tr>
<th>RDF Schema Features:</th>
<th>Current proposal</th>
<th>Oracle's ISWC</th>
<th>OWL Lite</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Class (Thing, Nothing)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>* rdfs:subClassOf</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>* rdf:Property</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>* rdfs:subPropertyOf</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>* rdfs:domain</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>* rdfs:range</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>* rdfs:comment</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>* rdfs:label</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>* rdfs:seeAlso</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>* rdfs:isDefinedBy</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>"Annotation" Properties:</td>
<td>Current proposal</td>
<td>Oracle's ISWC</td>
<td>OWL Lite</td>
</tr>
<tr>
<td>* rdfs:label</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>* rdfs:comment</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>* rdfs:seeAlso</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>* rdfs:isDefinedBy</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

ADD FROM OWL

<table>
<thead>
<tr>
<th>(In)Equality:</th>
<th>Current proposal</th>
<th>Oracle's ISWC</th>
<th>OWL Lite</th>
</tr>
</thead>
<tbody>
<tr>
<td>* equivalentClass</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>* equivalentProperty</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>* sameAs</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>* differentFrom</td>
<td>?</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Property Characteristics:

<table>
<thead>
<tr>
<th>Current proposal</th>
<th>Oracle's ISWC</th>
<th>OWL Lite</th>
</tr>
</thead>
<tbody>
<tr>
<td>* inverseOf</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>* TransitiveProperty</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>* SymmetricProperty</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>* FunctionalProperty</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>* InverseFunctionalProperty</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>* AnnotationProperty</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

MAYBE:

<table>
<thead>
<tr>
<th>Current proposal</th>
<th>Oracle's ISWC</th>
<th>OWL Lite</th>
</tr>
</thead>
<tbody>
<tr>
<td>* AllDifferent, distinctMembers</td>
<td>?</td>
<td>yes</td>
</tr>
<tr>
<td>* ObjectProperty</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>* DatatypeProperty</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>* disjointWith</td>
<td>?</td>
<td>yes</td>
</tr>
</tbody>
</table>

Class/Restriction/MISC

<table>
<thead>
<tr>
<th>Current proposal</th>
<th>Oracle's ISWC</th>
<th>OWL Lite</th>
</tr>
</thead>
<tbody>
<tr>
<td>* complementOf</td>
<td>no</td>
<td>yes*</td>
</tr>
<tr>
<td>* oneOf</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>* Restriction</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>* allValuesFrom, someValuesFrom</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>* minCardinality, maxCardinality</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>* cardinality</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>* unionOf</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>* intersectionOf</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>* hasValue</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>* DataRange</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Note: OWL DL/FULL has everything.
Foaf is pretty close to OWL Mini

Demo:

Browsing FOAF in Swoop

Foaf: http://xmlns.com/foaf/0.1/
Swoop: http://www.mindswap.org/2004/SWOOP/