
Tabulator Table View

Ilaria Liccardi
il05r@ecs.soton.ac.uk

This work was funded by the WSRI exchange program

Why a table view?

 Useful in some situations but not others
 Not all data can be meaningfully displayed in a

table
− eg. FOAF documents

 For some data, the most natural and useful
format.

Tabular mapping

 General principle: triples mapped to table
− Subject → Row
− Predicate → Column
− Object → Cell content

 Common data for a subject grouped into a row
 Properties displayed in columns

Example

Triple:
<http://www.w3.org/People/Berners-Lee/card#i>

<foaf:name> "Timothy Berners-Lee"

Timothy Berners-Lee

Name

....
....
....

....

........

....

....

....

Problems

 A row will not always have a value in every
column

 A row can have multiple values for a column
 Triples are used for different purposes
 Too many columns
 Too much irrelevant information

Relevancy

 Filter by subject type
 Doesn't make sense to display eg. information about

OWL classes with information about world cities
 Columns relevant for one type are not relevant to

another

Relevancy

 Being confronted with too much information
when first viewing the table might be
overwhelming.

 Sensible defaults:
− Filter to most common type of subject by default
− Sort columns by usage, most popular on the left
− Not all columns initially shown (columns can be

added or removed if necessary)

delete columnsselect types add columns Literal selectors

Multiple values
 Most obvious with eg. foaf:knows
 Table view just shows the values separated

by commas
 Can be quite large!

Filtering

 For large data sets, useful to be able to filter
down to specific rows

 Most basic: simple string search
 Using inference of RDF types, more advanced

search types can be inferred
 “Selectors” displayed at top of columns for

filtering/sorting

Filtering

 Columns correspond to predicates used in
triples

 Type of data in columns can be determined
from rdfs:range

 eg. foaf:name rdfs:range rdf:Literal
− The “name” column contains literal strings!

rdf:Literal

 For columns with literal values, a plain search
box is displayed

 Arrows allow sorting by text value

Numbers
 XML Schema types (xsd:integer, xsd:float,

etc.)
 Filter by minimum/maximum limits
 Can use either a minimum or maximum, or

both, to give a range

Enumeration types

 Uses owl:oneOf to identify an enumeration
 Drop-down list allows filtering by particular

values.

Vague types

 Detailed type information not always available
− eg. literals that really contain numbers
− no range specified

 Can sometimes identify by content
− Regular expressions to match number values
− Can identify literals if all values are literals

Filters can be combined
 To “drill down” to the right information

− eg. Cities in the British Isles:

Future work

 SPARQL queries
− Generate queries from column filters, and vice

versa.
− Present the results of queries using the table view

 Add new selector types
 Date tanges
 Etc.

Future work

 Improve relevancy
− Hide certain common columns and classes?
− Use predicate types to better identify

relevant/interesting columns by default.

