
Tabulator Table View

Ilaria Liccardi
il05r@ecs.soton.ac.uk

This work was funded by the WSRI exchange program

Why a table view?

 Useful in some situations but not others
 Not all data can be meaningfully displayed in a

table
− eg. FOAF documents

 For some data, the most natural and useful
format.

Tabular mapping

 General principle: triples mapped to table
− Subject → Row
− Predicate → Column
− Object → Cell content

 Common data for a subject grouped into a row
 Properties displayed in columns

Example

Triple:
<http://www.w3.org/People/Berners-Lee/card#i>

<foaf:name> "Timothy Berners-Lee"

Timothy Berners-Lee

Name

....
....
....

....

........

....

....

....

Problems

 A row will not always have a value in every
column

 A row can have multiple values for a column
 Triples are used for different purposes
 Too many columns
 Too much irrelevant information

Relevancy

 Filter by subject type
 Doesn't make sense to display eg. information about

OWL classes with information about world cities
 Columns relevant for one type are not relevant to

another

Relevancy

 Being confronted with too much information
when first viewing the table might be
overwhelming.

 Sensible defaults:
− Filter to most common type of subject by default
− Sort columns by usage, most popular on the left
− Not all columns initially shown (columns can be

added or removed if necessary)

delete columnsselect types add columns Literal selectors

Multiple values
 Most obvious with eg. foaf:knows
 Table view just shows the values separated

by commas
 Can be quite large!

Filtering

 For large data sets, useful to be able to filter
down to specific rows

 Most basic: simple string search
 Using inference of RDF types, more advanced

search types can be inferred
 “Selectors” displayed at top of columns for

filtering/sorting

Filtering

 Columns correspond to predicates used in
triples

 Type of data in columns can be determined
from rdfs:range

 eg. foaf:name rdfs:range rdf:Literal
− The “name” column contains literal strings!

rdf:Literal

 For columns with literal values, a plain search
box is displayed

 Arrows allow sorting by text value

Numbers
 XML Schema types (xsd:integer, xsd:float,

etc.)
 Filter by minimum/maximum limits
 Can use either a minimum or maximum, or

both, to give a range

Enumeration types

 Uses owl:oneOf to identify an enumeration
 Drop-down list allows filtering by particular

values.

Vague types

 Detailed type information not always available
− eg. literals that really contain numbers
− no range specified

 Can sometimes identify by content
− Regular expressions to match number values
− Can identify literals if all values are literals

Filters can be combined
 To “drill down” to the right information

− eg. Cities in the British Isles:

Future work

 SPARQL queries
− Generate queries from column filters, and vice

versa.
− Present the results of queries using the table view

 Add new selector types
 Date tanges
 Etc.

Future work

 Improve relevancy
− Hide certain common columns and classes?
− Use predicate types to better identify

relevant/interesting columns by default.

