
Interoperable Access Control Policies: A
XACML and RIF Demonstration

Fatih Turkmen1,2, Lalana Kagal2, and Bruno Crispo1

1 University of Trento, Italy
2 CSAIL, MIT, USA

Abstract. eXtensible Access Control Markup Language (XACML), an
OASIS standard language for the specification of access control rules,
has been widely deployed in many Web-based systems. However, many
domains still use their custom solutions to manage authorizations. This
makes collaboration between and integration over applications and do-
mains using disparate policy language difficult and requires prior nego-
tiation and agreement between them. Rule Interchange Format (RIF) is
an interlingua being developed at W3C to allow the exchange of rules
between rule systems. We propose to express XACML as RIF in order to
enable XACML policy rules to be understood by any RIF based system.
In this paper, we present the design of our translator from/to XACML
to/from RIF by mapping XACML constructs to RIF. Our translator
will enable the exchange of RIF encoded XACML rules among different
policy systems.

1 Introduction

Service compositions especially in cross-enterprise collaborations bring many
costs along with the benefits. The parties in such a cooperation aim to keep the
additional cost of cooperative operation at minimum. Among other discrepancies
security systems produce many inconsistencies [1–3]. These include the opera-
tional issues such as the interfaces and standards employed in daily execution
of business processes and operations 1. One such a barrier is the representation
of authorization policies for company assets (e.g. services, hardware resources,
databases) in one enterprise being incompatible with the other/s.

For access control (i.e. authorization) specification many languages have been
proposed and employed. XACML 2, an OASIS standard, is the predominant lan-
guage for the specification of access control policies. It has found a wide usage
and deployment in both academia and industry because of its simplicity and ex-
pressivity. However, there are many organizations employing different languages
in their authorization systems. Some of these languages include Ponder2 [4], Rei
[5], PRIME [6], AIR [7], although a comprehensive list can be found in [8]. As
it is, in many cases, very difficult to change the authorization systems, making

1 http://searchsecurity.techtarget.com/tip/0,289483,sid14 gci1260582,00.html
2 http://www.oasis-open.org/committees/xacml/

them interoperable might serve as a cost-effective solution for collaborative busi-
nesses. For interoperability of access control policies, there is a need of a means
that will transit an access control rule from one representation to the other.

RIF promises the exchange of rules in a standard but more importantly
semantically preserving way. RIF Working Group aims to reach a common set
of rule features that will support majority of rule systems.

In this paper, we present our attempt to make XACML interoperable with
other access control languages having different semantic models. Specifically, we
elucidate the details of our RIF translator that gets a XACML policy as input
and produces the corresponding RIF-PRD representation. XACML specification
has been written in an informal language so that

2 Paper Contribution and Organization

The contributions of our paper can be summarized as the followings: By translat-
ing XACML into RIF, we enable the interoperability of XACML based systems
with non-standard custom solutions. Translation of a policy encoded in a stan-
dard representation dedicated for interoperability , RIF-PRD, will enable the
analysis of a policy very easy by further translating it into another form. By us-
ing our translator a policy encoded in RIF-PRD will be translated into XACML,
a widely used standard access control language. Our analysis show useful infor-
mation about the translation process of a rule language to RIF by eliciting the
steps and constraints of RIF.

We believe that our translation work between XACML and RIF will lead
to a new research direction dedicated to rule exchange and interoperability in
access control. This way we illustrate how wide spectrum regulatory XACML
policies can be exchanged between custom systems. Our very first motivation
is summarized in Figure 1 in which RIF acts a bridge between different policy
languages.

3 eXtensible Access Control Language (XACML)

XACML is an XML-based access control language endorsed by OASIS. It has
been widely deployed in many Web-based systems and there are many imple-
mentations supporting its use. The third version of XACML is expected to be
announced at the end of this year with some extensions modifications according
to received feedbacks.

Syntactically, an XACML Policy is composed of following top level elements:
PolicySet, Policy, Combining Algorithms, Target, Rules and Obligations. A Pol-
icySet composed of Policies or other PolicySets is the topmost element of an
XACML policy. It wraps all Policies together with a Policy Combining Al-
gorithm that resolves conflicts among policy decisions. Policy Combining Al-
gorithms include Permit-overrides, Deny-Overrides, First-applicable, Ordered-
permit-overrides, Ordered-deny-overrides and Only-one-applicable. A Policy is a

Fig. 1. RIF Use Case

container for XACML Rules that are atomic decision elements on the given Re-
quests. The decisions made by each individual rule is combined with a Rule Com-
bining algorithm. Rule Combining Algorithms are the with Policy-Combining
Algorithms except Only-one-applicable which is not suported.

Policy Target is used to seek the applicability of a policy for the given re-
quest. It includes the quadruple Subjects/Resources/Actions/Environments with
different number of Subject, Resource, Action and Environment (abbreviated as
S/R/A/E what follows) elements inside. Each (S/R/A/E) contains one or more
(S/R/A/E) Match elements (e.g. SubjectMatch, ResourceMatch) defining rele-
vant attributes of the element they are contained. The following code snippet
shows a small fraction of an XACML Match element.

<SubjectMatch MatchId="rfc822Name-match">

<AttributeValue"> med.example.com </AttributeValue>

<SubjectAttributeDesignator AttributeId="subj-id" DataType="rfc822Name"/>

</SubjectMatch>

Rules are cores of XACML Policies. A Policy can contain different number of
Rules combined with a Combining Algorithm. A rule specifies a logical expres-
sion stating the conditions a request must satisfy for the rule to be applicable
(e.g. a request issued between 8am and 8pm is applicable) and a decision in case
the conditions are satisfied. It constitutes of a Target similar to Policy Target
and a Condition. Conditions describe further constraints on S/R/A/E elements
by additional attribute value requirements. A rule has an Effect of either Permit
or Deny if it is applicable for a given Request.

3.1 Access Decisions in XACML

The component making access control decisions is called Policy Decision Point
(PDP) in XACML. Figure 3 illustrates the evaluation structure of XACML

PolicySet ::= (PolicySet)* PolicyCombiningAlgId Target (Policy)* Obliga�ons?

PolicyCombiningAlgId ::= (“deny-overrides” | “permit-overrides” |

“first-applicable” | “only-one-applicable” | “ordered-deny-overrides”

| “ordered-permit-overrides”)

Target ::= Subjects? Resources? Ac�ons? Environments?

Policy ::= RuleCombiningAlgId Target (… | (Rule)+) Obliga�ons?

RuleCombiningAlgId ::= URI (“deny-overrides” | “permit-overrides” |

“first-applicable” | “ordered-deny-overrides”

| “ordered-permit-overrides”)

Rule ::= RuleId (“Permit” | “Deny”) Descrip�on? Target? Condi�on?

Obliga�on ::= Obliga�onId (“Permit” | “Deny”) (A�ributeAssignment)*

Subject ::= (A�ributeValue (SubjectA�ributeDesignator | A�ributeSelector))+

Resource ::= (A�ributeValue (ResourceA�ributeDesignator | A�ributeSelector))+

Ac�on ::= (A�ributeValue (Ac�onA�ributeDesignator | A�ributeSelector))+

Environment ::= (A�ributeValue (EnvironmentA�ributeDesignator

| A�ributeSelector))+

Expression ::= Apply | A�ributeSelector | A�ributeValue | Func�on

| VariableReference | (Expression | A�ributeDesignatorType)

| (Expression | A�ributeDesignatorType) | (Expression |

(A�ributeDesignatorType SubjectCategory?)) | (Expression |

A�ributeDesignatorType)

Condi�on ::= Expression

A�ributeAssignment ::= A�ributeId A�ributeValue

A�ributeValue ::= Expression | (Any)* DataType

Apply ::= Func�onId (Expression)*

A�ributeSelector ::= RequestContextPath DataType MustBePresent?

Fig. 2. EBNF of XACML Policies

Policies/PolicySets. When an XACML Request arrives, PDP is provided rele-
vant attribute values and follows the below steps for a decision: 1) Applicability
check of the top level element (e.g. PolicySet, Policy) through Target - Request
matching, 2) If top level applicability succeeds, Rule applicability is checked via
Rule Target - Request matching, 3) According to given Combining Algorithm,
the applicable Rule Effect is propagated to Policy level, 4) If the top level ele-
ment is a PolicySet then the Policy decision is propagated to the PolicySet level
according to Policy Combining Algorithm.

In XACML, applicability check through Target and Request matching is done
through equality of ids (i.e. value identifiers with AttributeSelector and Attribut-
eDesignator) and the values given in the Target section and in the Request. The
matching process results in three states: ”Match”, ”No-match”, ”Indeterminate”.
If a Match state is caught then Rule Effect (i.e. either Permit or Deny decision) is
propagated to Policy level. Apart from two conventional cases, XACML provides
two informative results from a Rule, Policy or PolicySet evaluation: NotAppli-
cable and Indeterminate. ”NotApplicable” is returned when the Target-Request
matching falls into ”No-match” state or a Rule Condition is not satisfied. The

result ”Indeterminate” is given in the existence of several applicable policies with
Only-one-applicable Combining Algorithm or an error during the evaluation.

Fig. 3. XACML Evaluation Structure

4 Rule Interchange Format (RIF)

RIF is a World Wide Web Consortium (W3C) standard for the exchange of rules
3. RIF Working Group envisions a generic platform for rule exchange among
different parties in a semantically preserving way. RIF currently has three di-
alects: Basic Logic Dialect (referred as BLD), Production Rules Dialect (PRD),
RIF-Core Dialect. BLD is a logic based (i.e. Horn rules) dialect with equal-
ity and a standard first-order semantics. It has extensions to support F-Logic
and XML-Schema datatypes. PRD is used for the representation of production
rules forming the structure {condition → action} where conditions are the an-
tecedents of if clauses and actions are then clauses mainly used for fact related
operations (e.g. assertion, modification and retraction) on the knowledge base
(KB). RIF-Core is a common subset of BLD and PRD dialects. In addition to
these three dialects, RIF specification provides a framework (i.e. Framework of
3 http://www.w3.org/2005/rules/wiki/RIF Working Group

Logic Dialects) for defining new logic based dialects. RIF allows the definition
of new dialects by restricting or extending some features of the framework. The
specification also provides an integration and compatibility model between RIF
and RDF/OWL making RIF Web-aware.

One of the early RIF papers, [9] demonstrates several use cases of RIF with
some feature analysis. It showcases BLD usage in different platforms and lists
some of the features not available such as negation and aggregation. In addition
to those listed items, we have found that RIF in general doesn’t have a mecha-
nism for the interchange of metadata for the rules exchanged. We believe that
RIF can be a strong standard with the support of a component/mechanism for
the transport of metadata as some languages have extensions for the specification
of metadata inside the rule language itself (e.g. XACML).

During the writing of the paper, RIF Working Group was about to officially
announce RIF as a W3C recommendation (circa September 2009). In our trans-
lation we tried to stick RIF-Core constructs as it is the minimal rule interchange
dialect and supported by the majority of rule platforms with the least amount
of effort. However, RIF-Core and RIF-BLD do not support negation. Because
of negation feature, our translation falls into PRD. For that reason we followed
PRD syntax in our demonstrations of translation in the paper although any fea-
ture apart from negation can be easily represented in BLD. What follows in the
next section is a brief discussion of RIF-Core dialect and its relation to PRD
and BLD.

4.1 Common Subset of PRD and BLD: RIF-Core

PRD enables the exchange of production rules. Production rules form an ”if”
Condition ”then” Action structure where Condition represents logical expres-
sions for the Actions to be performed. PRD provides 5 atomic actions: Assert to
assert new knowledge (frame or fact) to the base, Retract to cancel knowledge
(frame or fact) from the base, Retract Object to cancel all facts of a given frame
object, Modify to replace all the values of an object and Execute to invoke an
externally defined action. Differently from logic-based dialects where the opera-
tional semantics are left to rule developer, PRD provides a default operational
semantics along with conflict resolution techniques for rule invocation.

BLD has a similar syntax to Datalog with a first-order semantics. It has
several extensions to support additional features such as International Resource
Identifiers (IRI) and frames of F-Logic [10]. BLD specification describes two
languages used to serialize BLD expressions in XML: Condition language and
Rule Language. Condition language used to specify premises of BLD rules while
Rule language is used to represent the production of the rule at a high level.

RIF-Core is the minimum set of syntax and semantics required for rule inter-
change by RIF. It is a common subset of BLD and PRD. Syntactically, RIF-Core
is subset of BLD such that it has Datalog-like rules and further extensions for
frames of F-Logic and IRIs. Alike with the rest of RIF dialects, RIF-Core spec-
ification provides two syntaxes: presentation syntax to describe the concepts
by combining mathematical symbols with English sentences and XML syntax

as the serialization of the given EBNF. Apart from non-safe rules (using some
built-in functions) all RIF-Core rules can be converted to BLD and PRD. As
RIF-Core is a subset of BLD, the translation from/to RIF-Core from/to BLD
is very easy. PRD specification also provides a methodology for the conversion
of PRD documents into RIF-Core as long as the document complies with the
following conditions:
Condition formulas do not contain negation: Negation is not available both in
RIF-Core and BLD.
Rule action blocks do not contain action variable declarations: No frame object
declarations in the form ?Var1(?Var2 Func(?Var3)) and frame slot values (?value
o[?s → ?value]). The simple method for converting RIF-Core documents into
PRD is to assert RIF-Core conclusions as facts to the knowledge base. For con-
version from PRD to RIF-Core the following symbols must be eliminated from
PRD document: ##, such that, Not, INeg, Do, Assert,Retract, Modify, Execute,
and New.

5 Mapping Analysis

The very first issue we had to tackle was deciding which dialect to use for the
translation. In brief, we tried to answer whether XACML is a production system
or a logic-based system in representation. RIF-Core, as a subset of different
dialects of RIF, proves that there are many common features between logic
based dialects and production systems. However the main difference between
logic dialects and production rule dialects lies in the operational semantics of
the language represented in RIF. PRD provides a set of operational semantics
together with conflict resolution strategies. However, rich set of features offered
by PRD makes it difficult to be mapped to many of the existing systems.

However, BLD and RIF-Core do not support negation and user-defined func-
tions. Because of variable semantics on many platforms, negation has been kept
out of BLD. For that reason, we decided to use PRD with a minimal set of fea-
tures that will capture the semantics of XACML. In this way, we are convinced
that our mapping can be easily specified in RIF-Core if negation is omitted. Be-
sides, we observed that characteristically XACML’s operational semantics have
a close similarity to that of PRD. For example, XACML does not yield only
Permit or Deny but also gives two informative results: NotApplicable and In-
determinate. Besides, environmental changes injected through parameters can
affect the access decisions. Especially when considering XACML used to specify
a Usage Control policy [11] a forward chaining approach is required.

To verify the semantical correctness of our mapping, we developed a proof-
of-concept implementation in SWI-Prolog 4 available at 5.

5.1 Requirements

Apart from which RIF dialect to use, our analysis revealed two important issues:
4 http://www.swi-prolog.org/
5 http://dit.unitn.it/t̃urkmen

– XACML concepts to be addressed in the mapping are: PolicySet, Policy,
Match, Target, Rule, Combining Algorithm, Condition and Obligation. We
have kept Obligations out of scope for our initial work.

– There are different ways of representing XACML rules and policies in RIF
during a rule exchange. We call our representation as Policy or PolicySet
wise representation in which rules and policies are encoded as a whole. Each
section of a policy and a rule accompanied with the corresponding values in
the form of facts is mapped to RIF.

– The knowledge in KB must have a logical grouping to reflect the associations
between entities. For example, a Match must be associated with a Target
of a Rule, or a Rule must be associated with a Policy or finally a Policy
must be associated with a PolicySet. A XACML entity relationship can be
summarized as follows: Rules → Policies → PolicySets → Policies →
Rules

– We assume that there are no external Policy/PolicySet references in an
XACML PolicySet or they have been resolved prior to translation. Alter-
natively, they can be converted into OWL ontologies as described in [12].
After converting XACML policies into OWL ontologies, they can be refer-
enced by using RIF Web Ontology Language(OWL)/Resource Description
Framework (RDF) compatability. RIF-OWL/RDF compatibility allows ex-
ternal vocabulary references from a RIF document.

The motivations behind our way of representation are the incorporated se-
mantics of RIF and characteristics of XACML. The former required us to capture
Ruleset concept of rule based systems. The latter motivation allowed us doing
easy association between a rule as a micro entity and a policy as a macro entity.
At a higher scale, we could associate a Policy as a micro entity to a PolicySet
as a macro entity without adding further semantics during the translation.

6 XACML2RIF

After obtaining the requirements listed in Section 5.1, we followed an approach
very similar to the presentation of XACML elements in XACML v2.0 specifi-
cation for mapping. At the very core, we have a Target element acting as a
precondition for Rules, Policies and PolicySets. Further we have Rules combined
with a given Rule Combining Algorithm in case they are applicable. At the very
top level we have PolicySets where all decisions brought up from Policies are
merged with a Policy Combining Algorithm. Apart from Only-one-applicable
Policy Combining Algorithm, the semantics of Combining Algorithms are the
same for Policies and Rules. For that reason, we present only Rule Combining
Algorithms from which Policy Combining Algorithms can be easily obtained by
changing Rule entity to Policy.

6.1 Target Evaluation

The single entity we use for matching is a Match (i.e. SubjectMatch, Resource-
Match, ActionMatch and EnvironmentMatch) element. In the knowledge base, a

Match element is represented as Match(PolicyNumber, RuleNumber, MatchNumber,
AttributeID, AttributeValue) where; PolicyNumber and RuleNumber identifies
the Policy and Rule respectively that Match element belongs to; MatchNumber
represents the set of Match elements defining a single S/R/A/E element (any
of them) and finally AttributeID and AttributeValue represent the actual at-
tribute id/value pairs to be used in matching. In addition to these Match el-
ements, we have an additional fact added to RIF representation to refer to
number of Match elements of each type. The below code snippet represents
a single Match element. A Match group formula is available in four types by
replacing the underscore with Subject, Resource, Action and Environment. Be-
sides, the negation of above group formula produces ”No-Match” case where
(?Rule[Match(→ ”No−Match”])) is asserted to the base.

(*Match*)

Forall ?MatchNumber such that(

If Or(Exists ?RequestAttId ?RequestAttVal ?_Match(

?_Match[PolicyNumber->?Policy]

?_Match[RuleNumber->?Rule]

?_Match[MatchNumber->?MatchNumber]

?_Match[AttributeId->?RequestAttId]

?_Match[AttributeValue->?RequestAttVal]

)

)

Then Do (Assert(?Rule[_->"Match"])))

If Not(?Rule[_->"Match"])

Then Do (Assert(?Rule[_->"No-Match"])

In XACML, Match elements have a MatchId attribute defining the function
(e.g. string-equal or integer-less-than) to be used for the comparison between
attribute ids and values of the Policy. There are 6 possible functions to be used
for matching between attributes. However, we included only equality predicates
for demonstration as the rest of functions can be easily addressed via PRD built-
in predicates. For the whole Rule Target section we have conjunctions of each
individual Target entity (i.e. (S/R/A/E)) generated from Match elements. This
assures that the XACML Request attributes match at least one set of Match
elements composing an S/R/A/E entity as illustrated below.

(*RuleTarget*)

If And(?Rule[Subject->"Match"]

?Rule[Resource->"Match"]

?Rule[Action->"Match"]

?Rule[Environment->"Match"]

)

Then Do (Assert(?Rule[Target->"Match"]))

If Not(?Rule[Target->"Match"])

Then Do (Assert(?Rule[Target->"NotApplicable"]))

The final check whether ?Rule[Target → ”Match”] or ?Rule[Target →
”NotApplicable”] is asserted reveals ”Indeterminate” case with negation. Ac-
cordingly, ?Rule[Target→ ”Indeterminate”] is asserted to KB.

In our mapping, we distinguish between Targets of Policy, PolicySet and Rule
although they are the same in functionality. The reason to address them sepa-
rately lies on being able to detect the reason of NotApplicable cases. Addressing
them separately enables us understand whether the Policy Target or a specific
Rule Target (referred with Rule index) is not matched .

6.2 Condition

XACML Conditions put further constraints on the applicability of a Rule against
a matched Request with Target. Conditions present a set of (AttributeId, At-
tributeValue) associated with any of S/R/A/E elements described in Target
section or in the Request. [12] does not fully support XACML built-in functions
claiming the impossibility of having a complete and sound reasoning procedure
for all of them. In our translation we rely on RIF Data Types and Built-in
(RIF-DTB) functions to support XACML functions. The majority of XACML
Condition functions can be easily addressed in PRD by using RIF built-ins.

After eliminating Condition specific attributes XACML Condition is equal
to an Expression nonterminal:
Expression ::= (FunctionId (Expression)*) | AttributeSelector |
AttributeValue | Function | VariableReference | (S/R/A/E)Designator

Attribute Selectors are very similar to AttributeDesignators except they work
with XPath expressions. They specify the attributes they require in the form of
XPath expressions. VariableReferences can be thought as a wrapper for At-
tributeSelector and AttributeDesignators. They enable to address them via sim-
ple referencing. For that reason, they can be handled in the same way with
AttributeSelectors and AttributeDesignators. Except the below code snippet
where ”string-equal” function is specified Condition matching very similar to
Match elements..

Forall ?ConNumber(

If Exists ?RequestAttId ?RequestAttVal(

Condition[AttributeValue->?value]

External(pred:string-equal(?value ?RequestAttVal)))

Then Do (Assert(?Rule[Condition->"Satisfied"])

))

If Not(?Rule[Condition->"Satisfied"])

Then Do (Assert(?Rule[Condition->"Not-Satisfied"])

6.3 XACML Functions/Predicates

XACML has a really rich set of standard functions and predicates (9̃0) based on
XPath functions. Supporting all these functions require a significant amount of
effort in a rule based system. However, RIF also has a rich set of functions based

on XPath and probably causing rule system developers postpone RIF support
in their systems. From XACML to RIF translation point of view, rich function
support of RIF allows us only concentrate on the mismatched or unsupported
XACML functions. Based on XACML v2.0 specification, Table 1 provides a
categorized view of XACML functions and their correspondence in RIF.

Function/Predicate Type Not Available in RIF

Equality Predicates X500Name, rfc822Name, hexBinary,
base64Binary equality functions

Arithmetic functions Integer-abs (Absolute Value function)
String conversion functions String-normalize-space
Numeric data-type conversion functions -
Logical functions n-of
Numeric comparison functions -
Date and time arithmetic functions -
Non-numeric comparison functions -
String functions -
Bag functions All
Set functions All
Higher-order bag functions All
Regular-expression-based functions All
Special match functions All
XPath-based functions All

Table 1. XACML Condition Functions

As Table 1 shows, there are some functions not available in RIF specification.
However, our analysis revealed that we can map these functions with the existing
functions and extensions.

6.4 Rule Evaluation

Rule evaluation results in four cases depending on the Effect given in the rule:
Permit, Deny, NotApplicable, Indeterminate. The procedure for handling Deny
and Permit is the same. For that reason a Rule evaluation result is obtained from
three formulas: DecisionWithEffect, NotApplicableRule and IndeterminateRule.
DecisionWithEffect is the conjunction of Target and Condition evaluation, and
the check for Rule Effect whether it is ”Permit” or ”Deny”.

(*decisionWEffect*)

If Exists ?Effect (

And(?Rule[Target->"Match"]

?Rule[Condition->"Satisfied"]

?Rule[Effect->?Effect]))

Then Do (Assert(?Rule[Decision->?Effect]))

NotApplicable formula verifies whether the Rule is applicable for the Request
by checking Rule Target and Condition. If Rule Target is ”NotApplicable” or it
is ”Applicable” but Condition is ”NotSatisfied” then the Rule yields ”NotAppli-
cable”. Indeterminate formula covers the rest of the cases where Rule decision
is neither Permit or Deny nor NotApplicable.

After addressing Target section of individual Rules and their decisions, we
use the following formula to obtain a decision from a Rule for a given Request.

(*RuleEvaluation*)

Forall ?Rule ((*_Match*) (*RuleTarget*)

if Exists ?Result(?Rule[Decision->?Result]))

7 Mapping XACML Policies to RIF

XACML Policies are composed of a Policy Target, Rules and a Combining Al-
gorithm to resolve possible conflicts among the Rule decisions. As a Policy de-
cision depends on the given Combining Algorithm, we needed to address each
algorithm with a corresponding formula (predicate). However a Policy Target
is a prerequisite for the Policy Rule evaluation elicited in the previous section.
The RIF mapping of Policy Target is very similar to Rule Target mapping as
demonstrated before. When addressing Policy Combining Algorithms it precon-
ditions (i.e. conjunction) the evaluation of Policy Rules. For that reason, we have
defined a dedicated predicate for Policy Target that makes use of Rule Target
evaluation predicates with an exceptional case: Rule number (i.e. ?Rule) is set
to 0. The same idea also applies for a PolicySet Target where Policy number
(e.g. ?Policy) is set to 0.

In the following sections, we present how a decision is generated from a Policy
by providing relevant predicates for Rule matching and conflict resolution.

7.1 Matching a Rule

Among the standard Combining Algorithm formulas we have a common formula
(i.e. match rule) used to find first applicable Rule for a given Request. As the
Rules are ordered according to their order in the Policy (through associations),
it is straight forward to enforce the ordering of Rules. This extremely eases the
translation of First-applicable and Ordered-permit/deny-overrides algorithms.

To match a Rule we use a predicate called rule result that asserts Rule eval-
uation Result for the encoded Request. rule result can be considered as the
wrapping of all Rule related formulas presented before. The following formula
that propagates the first matched Rule of a Policy.

match_rule(Policy,Rule,TotalRuleNumber,Result,WhichRule) :-

(rule_result(Policy,Rule,Result),

(Result==deny; Result==permit),WhichRule is Order,!);

(New is Rule + 1, New =< TotalRuleNumber, WhichRule is New,

match_rule(Policy,New,TotalRuleNumber,Result,WhichRule)).

7.2 Policy/Rule Combining Algorithms

At the Policy level, XACML has 5 Rule Combining Algorithms. After defining
Policy Target similar to Rule Target, we explain and address each of Combining
Algorithms with the relevant predicates.

First-applicable: According to the order given in the Policy, First-Applicable
rule is picked among the rules. The following formula using match rule predi-
cate maps the First-applicable algorithm. Note that, it makes use of ruleNum
predicate to obtain the number of Rules.

first_applicable(P,R,Result) :- policy_target(P,Match),

Match == match, ruleNum(P,Num),

match_rule(P,R,Num,Result,WhichRule).

Permit-overrides: If among the many rules, one applicable rule yields Permit
then the result would be Permit. If there is not any Permit but at least one
Deny and the rest is NotApplicable then the result would be Deny. In the case
of all rules NotApplicable, the result would be NotApplicable. permit overrides
predicate relies on another predicate that checks whether Policy Target matches
the Request. The same predicate, not applicable or indeterminate, allows us to
propagate NotApplicable or Indeterminate results of a Policy.

permit_overrides(Policy,Rule,Result,Match) :-

not(not_applicable_or_indeterminate(Policy, Match)),

ruleNum(Policy, Num),

match_rule(Policy, Rule, Num, Result, WhichRule),

(Result==permit,!;

New is Rule + 1, permit_overrides(Policy,New,ResultNew)).

Deny-overrides: It is very similar to Permit-overrides algorithm except the
overriding decision is ”Deny”. The corresponding predicate can be obtained by
changing Result values to ”Deny”.

Ordered-(permit/deny)-overrides: Because of our representation of Match el-
ements we did not do to spend any special efforts to address Ordered algo-
rithms. As we associate a Match element subjectMatch(PolicyNumber, RuleNum-
ber, MatchNumber, AttributeId, AttributeValue) to a Policy and a Rule with a
numbering system, the ordering is enforced implicitly in the predicates.

A Policy is represented as a disjunction of Combining Algorithms. PolicySets
include Policy Combining algorithms very similar to Rule Combining algorithms
with an additional algorithm Only-one-applicable. Our current mapping does
not support Only-one-applicable algorithm. The rest of the algorithms can be
considered identical to their Rule counterparts by referring to Policies instead
of Rules in the formulas.

8 Related Work

There has been many research addressing XACML. The more related work to
ours lies in the formalization of XACML policies for security property and policy

change-impact analysis [12–16]. Among those, [12] has done the most extensive
formalization in Datalog to provide formal semantics and enable security anal-
ysis (e.g. feature analysis) by using off-the-shelf DL reasoners. However, only a
subset of XACML is supported in author’s formalization and his formalization
relies on Datalog stratification to prevent ambiguity and policy conflicts. This
causes some of the XACML semantics to be obscured by the implementation
language functionality. The main difference between our approach is that we
focus on making XACML semantics explicit such that they can be implemented
in any (RIF supported) rule language. Finally, author’s presented system imple-
mentation is not available for testing.

RIF is expected to be standardized within several months of our writing.
Because of the promises given by RIF vision and underlying requirements of
such a system require a lot of effort, RIF has recently become stabilized and
found some usage. For that reason, RIF related research has been limited [17,
9]. However, rule interchange has been studied to some extent under RuleML
umbrella and other business rule systems [18].

The main difference between related previous work and ours is although we
have done formalization, we mainly focus on the interoperability of XACML. Safe
translation and transition of XACML rules to other systems is the motivation of
our paper. As being a W3C recommendation, RIF is an obvious choice to be used
as a rule transport means. To extent of our knowledge XACML rule exchange
has not been addressed in any research. When mapping XACML to RIF we tried
to cover most of the cases such as condition functions and simplified mapping of
conflict resolution techniques with smart fact representation.

9 Conclusions and Future Work

We have mapped a subset of XACML to RIF by using minimum set of PRD
features to keep the mapping close to RIF-Core in which negation is the main
difference. PRD working draft states an effort towards the compatibility between
PRD and BLD. As RIF-BLD covers majority of logic based rule languages, the
compatibility effort will enable the support of many logic based access control
languages in RIF-PRD. Access control requirements play a critical role in col-
laborative businesses so their exchange as part of contracts/agreements. RIF
can act as the main means with an agreed semantics for rule interchange among
diverse systems.

We believe that the compatibility studies between RIF dialects play an impor-
tant role in the future development of RIF. The two main branches, production
rules and logic based dialects have many things in common as specified in RIF-
Core. However, support of meta data transfer between rule endpoints about the
exchanged rulesets can improve RIF usage. Although RIF has not been designed
for reasoning on translated rulesets, there is a need of a mechanism or tool that
will help verifying the correctness of translation syntax and semantics to some
level.

As a future work, we are planning to extend our work to support all Com-
bining Algorithms (e.g. Only-one-applicable and user defined combining algo-
rithms), user defined Condition functions and Obligations. We want to showcase
our mapping in a real world scenario where a XACML ruleset is exchanged with a
totally different rule system. Lastly, RIF specification mentions about the preser-
vation of semantics during a translation. The basic question tried to be answered
is whether the translated Ruleset is semantically equivalent to the original Rule-
set. We are planning to do some safety analysis and semantics preservation checks
on the translated XACML rules.

References

1. Security and trust management in supply chains, Ramesh Kolluru and Paul H.
Meredith, Information Management and Computer Security Journal, 2001.

2. Policy-Based Collaboration: Moving to an Enterprisewide Framework for Working
and Communicating with Confidence, 2008, Cisco Systems

3. Access Control for Cross-Organisational Web Service Composition, Michael Menzel
and Christian Wolter and Christoph Meinel, Journal of Information Assurance and
Security, 2007

4. http://ponder2.net/
5. http://rei.umbc.edu/
6. https://www.prime-project.eu/prime products/
7. http://dig.csail.mit.edu/TAMI/2008/12/AIR/
8. http://www.w3.org/Policy/pling/wiki/PolicyLangReview#PRIME Languages
9. Please Pass the Rules: A Rule Interchange Demonstration, Gary Hallmark and

Christian de Sainte Marie and Marcos Didonet Del Fabro and Patrick Albert and
Adrian Paschke, RuleML, 2008

10. Logical foundations of object-oriented and frame-based languages, Michael Kifer,
Georg Lausen, James Wu. Journal of ACM, July 1995, pp. 741–843

11. Towards usage control models: beyond traditional access control, Jaehong Park
and Ravi Sandhu, Symposium on Access Control Models and Technologies, 2002,
Monterey, California, USA

12. Logic-based Framework For Web Access Control Policies, Vladimir Kolosvki, Phd
Thesis, 2008

13. Automated Verification of Access Control Policies Using a SAT Solver, Graham
Hughes and Tevfik Bultan, Journal on Software Tools for Technology Transfer
(STTT), 2008.

14. The Formal Semantics of XACML, Polar Humenn, 2003
15. Verification and Change-Impact Analysis of Access-Control Policies, Kathi Fisler

and Shriram Krishnamurthi and Leo A. Meyerovich and Michael Carl Tschantz,
ICSE, 2005

16. Reasoning about XACML policies using CSP, Jery Bryans, Workshop on Secure
Web Services, 2005, New York, USA

17. Rule Interchange Format: The Framework, Michael Kifer, Proceedings of the In-
ternational Symposium on Rule Representation, Interchange and Reasoning on the
Web, 2008

18. Rule Modeling and Interchange, Proceedings of the Ninth International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing, Adrian Giurca and
Gerd Wagner, 2008

