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Abstract

The vision of the Semantic Web is to make Web content

machine-readable. To describe data, the Resource Descrip-

tion Framework has been extended with a schema-level and

description logics (e.g. RDF-S and OWL DL). To success-

fully retrieve data described by RDF-based ontologies, the

query language SPARQL is currently being developed at

W3C. However, although SPARQL also provides a clien-

t/server protocol, currently queries are targeted to single

sites only. For a large-scale data integration, which is the

scope of a middleware developed within the Austrian Grid

project, it is necessary to execute queries on distributed

data nodes. Because of the large amount of research un-

dertaken in the field of relational database systems, it is

reasonable to apply relational algebra to SPARQL query

processors. In fact, most RDF triple stores are based on re-

lational database systems. In this paper, several concepts

are proposed to enable the integration of heterogeneous,

distributed data sources with SPARQL.

1. Introduction

During the last couple of years, Grid Computing has be-

come a new paradigm partly based on existing technologies

which have been introduced by the High-Performance and

Cluster Computing communities since the 1960ies. If the

Semantic Web is about bringing the Web to its full poten-

tial, Grid Computing would be about bringing all kind of

resources connected by the internet to its collaborative po-

tential. Such resources may be CPU power, storage capac-

ity, higher-level services, or available data which is also the

key resource of the Semantic Web [24]. Several national and

transnational Grid projects have been started during the last

years, as also in Austria [2]. Especially for scientific col-

laboration, sharing data between different parties is funda-

mental. Therefore, data managed by various research com-

munities should also be regarded as Grid resources, shared

by Virtual Organizations [12]. To enable a large-scale shar-

ing of scientific data within Grids, a middleware is being

developed as part of the Austrian Grid project which will

enable the virtual integration of distributed, heterogeneous

data sources based on Semantic Web technology.

Scientific data is usually stored in various different stor-

age systems like relational database systems, XML docu-

ments, CSV files, or spreadsheets. Sometimes access is

available via public Web gateways (simple REST or web

service/SOAP endpoints). Additionally, these data sources

often use different schemes to store and manage similar

data. An integrated global data model for such a scenario

will probably become rather complex and moreover, it will

be subject of frequent changes and adjustments when new

data sources are added or altered. Several key concepts of

the Semantic Web are therefore used to enable the integra-

tion of a large number of heterogeneous, distributed data

sources on the Grid. The key components of the Seman-

tic Web are RDF-based ontologies, whose concepts are re-

ferred by URIs and organized by several namespaces. This

allows the design of several domain ontologies which are

extensible and can be merged and combined in a very flex-

ible way. While the schema level of ontologies can be

used to describe the intensional layer for a specific domain

(schema), data can be expressed as instances adhering to

this schema. Currently, extensible research is done in the

fields of ontology modeling, mapping, and evolution as well

as model management [22] in general. However, there is

still a lack of concepts and testbeds targeted towards sys-

tematic retrieval of data on the Semantic Web supporting

distributed query execution. To enable the distributed ac-

cess through a SPARQL query processor, some constraints

have to be stipulated which will be discussed in this contri-

bution.

In order to integrate data sources on the Grid, the pro-

posed middleware must be able to map local data models

and schemes to several global domain ontologies. As a first

approach a formal mapping was defined in two phases [5].

In the first phase local ontologies were created from lo-
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cal schemes and afterwards local concepts where mapped

to global concepts in the second phase. However, this ap-

proach became too complex, because of the heterogeneity in

data models, especially when adding support for distributed

query processing. As a second step, the mediator-wrapper

architecture [14], which is a common method to integrate

data sources with heterogeneous data models is used. Be-

cause each data source supports different access methods, a

dynamic programming algorithm based on the enumeration

of rules [19] is applied. Several existing cost models may

be integrated for query plan optimization.

2. Related Work

The use of ontologies for data integration is not a new

concept. However, there is currently no approach which

enables the integration of distributed, heterogeneous data

sources by distributing SPARQL query plans. To be us-

able with up-to-date Grid toolkits, such a middleware must

expose OGSA-compliant Grid services, support Virtual Or-

ganizations [12], and incorporate existing Grid Security In-

frastructure (GSI). Related work can be divided into several

domains: RDF triple stores and SPARQL implementations,

mapping approaches like D2R-Server [8] or Virtuoso [3],

traditional data integration as well as distributed query pro-

cessing for relational database systems.

Because the storage engine is a core component

during query processing, it is important to compre-

hend how these systems organize data and implement

SPARQL. Triple stores manage a large amount of

(subject, predicate, object) triples – or (s, p, o) in short

– as RDF data. Beyond the abstract triple model of RDF

nearly all triple store implementations are using a rela-

tional model, mainly because considerable research effort

has been done and relational database systems are widely

used today. Examples for RDF stores based on relational

database systems are the open source projects Sesame [18],

Jena [7], 3store [16] as well as commercial products like

AllegroGraph [13] and OpenLink Virtuoso [3]. Currently

Mulgara [23] (formerly known as Kowari) seems to be the

only native RDF store. Some of them [17, 1, 3] support

SPARQL, which is likely to become a W3C Recommen-

dation in future. The relational algebra applied to process

SPARQL queries has been published for 3store [15] and

Jena ARQ [9].

D2R-Server [8] could be used to integrate relational

database systems, especially since it is able to translate

SPARQL queries to native SQL queries and return tuples

as OWL instances. However, a more generic approach,

like the mediator/wrapper architecture, is needed, particu-

larly because various storage systems and distributed query

processing have to be supported. In order to facilitate

these requirements an integrated system has to be devel-

oped and therefore the extension or re-implementation of

existing SPARQL query processors is required. A possi-

ble starting point is the DARQ project [4], started 2006,

which is a modification of Jena ARQ to support federated

SPARQL queries. Another approach to data integration is

GridMiner [6] which is based on a mediator/wrapper ap-

proach [21]. However, Gridminer does not use ontologies as

global schemes and instead of a formal query language, an

abstract query plan is constructed manually by the user. Ad-

ditionally, it is currently not capable of processing SPARQL

queries because of the lack of semantics. However, there

is a cooperation with this project within the Austrian Grid.

OGSA-DQP [20] is a service-based distributed query pro-

cessor for Grids which is able to create parallel sub-plans

and thus exploit Grid resources more efficiently.

The query processor for the required middleware will be

an integrated approach of a distributed and semantic query

processor. In this contribution ontology mapping is not dis-

cussed. It is assumed that any local data sources already

adheres to the global ontology used. In fact various wrap-

pers will translate queries according to the underlaying data

model.

3. Architecture Overview

The mediator-wrapper architecture of the system is

shown in Figure 1. Clients connect to the mediator and re-

quest results by submitting SPARQL queries corresponding

to the global domain ontologies. The mediator parses such

a query and enumerates multiple query plans using an it-

erative dynamic programming algorithm [11, p. 48]. The

cheapest plan with minimal estimated retrieval time will fi-

nally be executed. To overcome model and schema hetero-

geneity each wrapper provides various specific access meth-

ods which will be described in the next section. Usually a

wrapper is placed as close as possible to the underlying data

sources to benefit of local capabilities like relational join

operations. However, some data sources like those avail-

able via web service endpoints cannot be extended by a

wrapper because there is no direct access to the data source.

For those endpoints wrappers may be placed inside a spe-

cial wrapper container as part of the mediator. To execute

global join operations the mediator can temporarily store

data inside a local cache. However, based on response time

estimates, the query optimizer will chose alternative plans

which enable join operations in relational database systems

before data is consumed by the mediator.

The catalog which is attached to the mediator contains all

global domain ontologies used by the data integration sys-

tem. The global ontologies are developed in a collaborative

process by experts from all scientific domains which will

utilize the middleware for their purposes. It may be reason-

able to introduce global forums and support collaboration

451

Authorized licensed use limited to: MIT Libraries. Downloaded on November 20, 2009 at 14:03 from IEEE Xplore.  Restrictions apply. 



Figure 1. Mediator-wrapper architecture.

with additional tools. When a new data source is registered,

the corresponding wrapper may use declarative mappings

to some certain extent to facilitate wrapper implementation.

However, because of the mentioned complexity, a declar-

ative mapping from an arbitrary data model and schema to

the global domain ontologies is often not achievable. This is

also the reason why the mediator-wrapper approach is being

used now. A wrapper may use mapping information which

is specific to the underlaying data model. For instance, an

existing relational-ontology mapper like D2RQ [8] can be

used which itself applies declarative mappings to rewrite

SPARQL to SQL queries.

4. Query Processing

Because relational database systems are the most com-

monly used information systems, many data integration sys-

tems are based on relational algebra. Nearly all RDF stor-

age engines use relational database systems and relational

algebra to process SPARQL queries [9]. As shown in [9]

a variant of relational algebra can be found for RDF data.

The operators for selection, projection, inner join, left outer

join (which is required to support OPTIONAL expressions),

union, and difference as described in [9] have been adopted.

Because global ontologies and queries are based on RDF,

the system is primarily based on graph pattern matching.

Metadata Catalog The catalog which is attached to the

mediator does not only contain the global domain ontolo-

gies, additionally information about registered data sources

is stored. In order to enable systematic data source selec-

tion as part of query optimization, it is necessary for the

mediator to know which data source provides which sort of

information, or in other words, instances of which classes.

Moreover, wrappers may report statistics about the magni-

tude of instances for each class to improve cost estimation.

Query optimization As mentioned in section 3, query

optimization is based on iterative dynamic programming.

Firstly, the algorithm generates multiple access plans ac-

cording to available indices and access capabilities of at-

tached data sources. In a second step, multiple join plans are

generated. Especially in a distributed environment there are

numerous possible sub-plans for joining data as discussed in

[10]. Although the algorithm is commonly used in database

systems, it can also be applied to query processing in the

mediator-wrapper architecture. The access and join opera-

tions are replaced by specific operations provided by wrap-

pers. Again, multiple access and join plans are generated

and the cheapest is finally selected. Some sample wrapper

operators for a relational data source wrapper and the medi-

ator are:

plan access(G, F ) = R Fetch(G, F, D)

plan join(S1, S2, V ) = R Join(S1, S2, V ) if S1.site = S2.site

plan join(S1, S2, V ) = M Join(S1, S2, V ) if S1.site 6= S2.site

G is a graph pattern, F is a set of FILTER expressions, D

is a data source location, V is a join variable, and Si are

results of sub plans. Results of sub-plans are RDF relations

as described in [9]. An RDF relation is a set of RDF tuples

and can be represented as a table with query variables as its

header and RDF tuples as row data. Data source selection

is done by enumerating plan access(G, F, P ). According

to the types in the query and site meta data stored in the

catalog, multiple fetch operations with different site loca-

tions D are created. Joins inside relational database sys-

tems (R Join) are only possible if the data source of both

sub results S1 and S2 is the same. Otherwise, the medi-

ator has to execute the join operation M Join inside the

attached cache which will require costly data shipping from

S1 and S2 to the mediator. If a wrapper does not natively

support a join operation, only M Joins will be possible.

The union operator for SPARQL is different from the re-

lational one and is processed as an outer union as defined

in [25, Sect. 7]. A FILTER expression is always bound to

one or more variables and according to [25] it is a restric-

tion on solutions over the whole group in which the filter

appears. Hence, the FILTER expression is only submitted

to relevant graph groups.

Example Based on sample data shown in Tables 1

and 2, a detailed example will be discussed now. The

global SPARQL query shown in Listing 1 is used to

retrieve sunspot observations (in terms of the global con-

cept http://gsdam.sf.net/global/science/

astro/solar#SunspotObservation) from July

26–27 2006. More specifically, the query result will contain

information about the number of spots and groups observed

as well as the lastName and eventually the email address
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kso:SO9989 a sun:SunspotObservation

kso:SO9989 t:inCalendarClockDataType ”2006-07-26T06:00:00Z”

kso:SO9989 sun:groups 1

kso:SO9989 sun:spots 13

kso:SO9989 sun:site kso:Site

kso:SO9989 sun:observedBy kso:Scientist18

. . .

kso:SO9991 a sun:SunspotObservation

kso:SO9991 t:inCalendarClockDataType ”2006-07-28T05:50:00Z”

kso:SO9991 sun:groups 1

kso:SO9991 sun:spots 12

kso:SO9991 sun:site kso:Site

kso:SO9991 sun:observedBy kso:Scientist18

Table 1. Observation data on Node A.

kso:Scientist18 a p:Person

kso:Scientist18 p:firstName ”Sepp”

kso:Scientist18 p:lastName ”Falcon”

kso:Scientist3 a p:Person

kso:Scientist3 p:lastName ”Klug”

kso:Scientist3 p:email ”kl@me.cc”

Table 2. Site and scientist data on Node B.

of the scientist who observed the solar phenomenon. The

overall workflow of the query engine is the following:

1. grouping of triple patterns according to subjects

2. determining subject types

3. enumerate access plans

4. enumerate join plans

5. add root projection

The first step is the grouping of the basic graph pattern1

according to the subject variables ?so and ?obs:

g1 ?so a sun:SunspotObservation .

?so t:inCalendarClockDataType ?dt .

?so sun:spots ?sp .

?so sun:groups ?gr .

?so sun:observedAt ?si .

?so sun:observedBy ?obs .

g2 ?obs p:lastName ?ln .

OPTIONAL { ?obs p:email ?em } .

In a second step the classes of all involved subjects are de-

termined using the rdf:type property (resp. the a short-

cut) and the catalog. Because there is a qualified cardinality

restriction on sun:observedBy:

sun:SunspotObservation rdfs:subClassOf [

a owl:Restriction ;

owl:onProperty sun:observedBy ;

owl:allValuesFrom p:Person ] .

it can be deduced, that the subject in g2 must be a

p:Person. Thus, the subject types for the graph pat-

tern groups are g1 → sun:SunspotObservation and

g2 → p:Person. It has to be mentioned that the medi-

ator will reject any query missing type information since

1Named graph patterns are currently not supported.

PREFIX sun: <http://gsdam.sf.net/global/science/

astro/solar#>

PREFIX p: <http://daml.umbc.edu/ontologies/

ittalks/person#>

PREFIX t: <http://www.isi.edu/˜pan/damltime/time-

entry.owl#>

SELECT ?dt ?sp ?gr ?ln ?em WHERE {

?so a sun:SunspotObservation ;

t:inCalendarClockDataType ?dt ;

sun:spots ?sp;

sun:groups ?gr;

sun:observedBy ?obs .

?obs p:lastName ?ln .

OPTIONAL { ?obs p:email ?em } .

FILTER (?dt > "2006-07-26T06:00:00Z"ˆˆxsd:

dateTime && ?dt <= "2006-07-27T06:05:00Z"

ˆˆxsd:dateTime) }

Listing 1. SPARQL sample query.

this is essential for data source selection. For instance, a

query with a graph pattern like {:s ?p ?o.} cannot be

executed at the moment. The next step is calling the dy-

namic programming algorithm and enumerating all possi-

ble access plans for each graph group. For each data source

providing sunspot observations (Node A, Table 1) respec-

tively person data (Node B, Table 2), an additional access

plan will be generated. If a wrapper provides different ac-

cess plans using different access methods, multiple plans

may be generated but all expensive plans are pruned and

the cheapest one will be selected. For the given query, two

access plans are generated:

R Fetch(g1, f1, ”NodeA”)
R Fetch(g2, null, ”NodeB”)
f1 = "FILTER (?dt > \"2006-07-26T06:00:00Z\"ˆˆxsd

:dateTime && ?dt <= \"2006-07-27T06:05:00Z\"ˆˆxsd

:dateTime)".

Each plan access operator (e.g. R Fetch) returns an RDF

relation with the heading variables of the corresponding

group g as a sub result. For instance, the RDF relation

obtained for R Fetch(g2, null, ”NodeB”) has the header

(?obs, ?ln, ?em) and contains all corresponding tu-

ples stored on Node B including instance URIs for ?obs.

After generating all possible join plans according to capa-

bilities of wrappers and provided enumeration rules and se-

lecting the cheapest plan, the root projection p = (?dt,
?sp, ?gr, ?ln, ?em) is added and the query plan is

complete:

M Proj(p, M Join(

R Fetch(g1, f1, ”NodeA”),

R Fetch(g1, null, ”NodeB”), ”?obs”))
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The sub-results from Node A and B are joined at the medi-

ator by variable j ="?obs" and the overall result is stored

in the cache attached to the mediator. Finally, the client will

receive a reference to the result row counter to iterate over

the results:

?dt ?sp ?gr ?ln ?em

2006-07-26T06:00:00Z 13 1 Falcon

2006-07-27T05:49:00Z 16 2 Klug kl@me.cc

. . .

5. Conclusion

Ontologies based on RDF enable the description of data

by commonly shared semantics. Because ontologies can

be organized in different domains by means of namespaces,

they are well suited for definition of global schemes in data

integration systems. The requirements of a middleware

for semantic integration of distributed heterogeneous data

sources on the Grid can be met by the proposed mediator-

wrapper approach. However, the framework described in

this paper is a first outlook of work in progress and perfor-

mance tests, extensions and improvements concerning opti-

mization will be required to prove the approach in a produc-

tion environment. Currently there is hardly any reasearch

done concerning distributed query processing for SPARQL.

The proposed client/server protocol as part of the SPARQL

recommendation does not include any iterator-based con-

cept. However, for efficient distributed query processing

pipelining will be necessary.
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