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Abstract. With the recent uptake on the linked open data on the Web,
there are many interlinked data sets on the Web today. Interesting results
that might not be obvious from this raw data itself, can be derived by
computing answers to rules using the data and essentially connecting
the dots to see the big picture. We describe a novel method to crawl
the Web of data and make inferences that satisfy rules of a particular
domain and to re-inject the derived conclusions, along with their proofs
in a proof ontology, back into the read-write Web. We have developed a
“Computation Agent” to do this, using rules written in a formal Semantic
Web rule language, and a user interface for viewing data along with their
proofs that give the justification for that particular data in an intuitive
manner.

1 Introduction

The linked open data cloud has seen a steady growth since DBPedia [2] project
started in 2007. The DBpedia knowledge base alone currently describes more
than 2.6 million things, and the knowledge base consists of 274 million pieces of
information expressed in RDF triples [1]. Some Weblog hosting sites and social
networking sites have already begun exporting user profiles in to RDF [10] using
the Friend-Of-A-Friend (FOAF) vocabulary [9]. Many other data sets have linked
up to this nucleus of DBpedia data set, and to each other, effectively increasing
the intelligence of the Web and supporting large scale data integration. This
allows people to use data browsers such as Tabulator [20] to surf across silos of
data that have been converted into linked data.

Although much of the linked data cloud is interlinked, there are many data
sets that have no explicit semantic associations with each other even though
these relationships might be obvious after a simple reasoning process. Once these
relationships are exposed through some mechanism, the newly found relation-
ships should be contributed back to the linked data cloud. This will allow reuse
of these derived facts, without having to reason over the entire graph of data
again. For someone who may be interested in knowing how a particular fact is



derived, a proof tree detailing the derivation steps could be attached with the
fact to enable provenance 1.

For example, in Fig 1, we have a simple linked data graph. There are several
different nodes (encoded A - J), and different kinds of relations between these
nodes and beyond. (One could assume that node A corresponds to the WebID
of Alice, node B corresponds to the WebID of Bob, and the edge between A and
B, i.e. ‘rel:AB’ corresponds to ‘foaf:knows’. Likewise, other nodes and edges in
this graph can be any other entity and relationship exposed as linked data). By
merely looking at this graph of data, the relationship between the triple A → E
and H → K may not be obvious at the first glance. But after the application of
a specific rule, we might discover that there is some relationship between these
two triples. Assume that the derivation path of this fact is as outlined in the red
arrows where new relationships between triples are created. It would be useful to
make these new relationships on the linked open data cloud persistent, so that
somebody else might be able to reuse this fact later. However, to reinforce the
trustworthiness of the fact that A → E derives H → K we attach the derivation
steps of the proof to it.

Fig. 1. Computations on a Linked Data Cloud (Starting from the triple {A rel:AE E}
we derive the triple {H rel:HK K} using the path outlined in red.)

The recommended method of querying RDF, and hence extracting data from
linked open data is by using SPARQL queries [16]. The SPARQL protocol [7]
offers a standard way to serve and access structured data on the Semantic Web.
However, SPARQL queries are designed to give an answer based on a particular
data set at a given end point. We envision a slightly different system where
answers to specific queries are computed using a crawler based “Computation
Agent”. These answers are updated using the SPARUL protocol [19] along with
the method of derivation in the form of a proof using a specific attachment
1 The impatient reader is encouraged to glance through [13] or to take a look at the

implementation of the User Interface given in Section 4.4.



mechanism. This “Computation Agent” will act on the given rule written in
the N3 (Notation 3) rule language [4] using any given URI as a seed to start
the process of crawling the linked data cloud. Once it finds information that
matches the criteria specified in the rule, it will update the derived facts from
the computation and the proofs associated with these facts. In summary, this
project has the following components:

– Computation Agent that crawls looking for data, makes deductions and
sends the result along with the proof

– Light weight Server that accepts SPARQL Update + Proof
– User Interface for viewing proofs

The remainder of the paper is organized as follows: In Section 2 we describe
the motivation behind this project and the desired features of such a system.
Section 3 illustrates few use cases that could use a computation such as the one
we have implemented. Section 4 outlines the protocols used in the implementa-
tion. Section 5 describes several related work from the Semantic Web world and
beyond. Section 6 discusses several future directions for this project. Finally in
section 7 we provide a summary and an outlook of the overall system.

2 Motivation

We believe such a system will be useful in providing solutions for maintaining the
data web, particularly in creating new data, updating existing data and deleting
unwanted data. We also believe attaching a proof with the derived result will
make the fact more trustworthy, and hence give it a relative importance based
on the number of proofs supporting the same derived fact.

2.1 Maintenance of the Data Web

Creating New Data and Updating Existing Data: The general mechanism
in use for this is to use SPARQL Update [19]. After new triples are generated,
the ‘Computing Agent’ sends SPARQL Update queries to ‘Publication Agents’,
such as Web servers or SPARQL endpoints 2. A ‘Publication Agent’ accepts
this update query and modifies the corresponding RDF document or deny the
request for update. It is relatively easy to modify pure RDF documents such as
RDF/XML or RDF/N3 documents with the help of a decent serializer. But if
the publication agent does not have write access, or if the documents in question
are in RDFa or XML+GRDDL formats 3, the Publication Agent could send a
notification to the person in charge of the document making a change request.

2 See section 4.2 for the technical details as to how this was achieved.
3 It’s relatively hard to programmatically find the correct piece to modify in RDFa or

in XML+GRDDL documents.



Deleting Unwanted Data In general, we can treat the number of proofs of a
triple to be the reference count of a triple, and do reference count-based garbage
collection. That is, if a triple is deleted, all the proofs which has the triple as one
of its antecedents should be removed. If all the proofs of a triple are removed,
we delete this triple. In other words, if this triple is no longer supported by
any evidence we delete it. Therefore, proofs or provenance data can help agents
induce chained deletion.

2.2 Valuing Information

Attaching proofs to a triple gives rise to a naive way of giving relative weights to
the triples. I.e. by counting the number of proofs supporting that triple we can
deduce the relative importance of the triple. For example, in Fig 4, we can see
that the statements like “Illaria Liccardi is a Tabulator developer” and “Albert
Au Yeung is a Tabulator developer” are no longer supported with proofs, which
suggests that they may be previous developers. A user who has a problem using
Tabulator might not want to consult Illaria or Albert, but instead someone
with a higher proof count such as KangHao Lu. We also experimented with a
very controversial and a subjective example, in which we deduce smart people
by using several criteria. As a matter of practical use, if an employer wants to
select the smartest people from a group, she can use our user interface and select
the one with the highest number evidence supporting the fact. Another scenario
is when there are contradictory information. For example, if a video on YouTube
has x number of ‘good’ ratings and y number of ‘bad’ ratings, then a user can
naively compare the ratings and get a sense for the value of that video. Similarly
with triples attached with contradictory proofs, we can get an estimate for the
importance of the proof by naively comparing the respective ‘good’ and ‘bad’
proof counts.

2.3 Desired Features

Some of the desired features of the “Computing Agent” are as follows:

Never Ending Crawler: It needs to crawl data, generate new information,
and update those information with proofs as long as data that satisfies the cri-
teria are available. We imagine that in the future, people write opinions in ma-
chine readable rules. Then for example, a never ending crawler+updater would
spread opinions of a person to places she doesn’t even know. Notice that in
this sense, crawlers+updaters are just like spamming programs. But since these
crawlers+updaters also send proofs along with the data, we propose the idea of
proof-based content filtering, as described in section 6.

Support Generalized Rules When the rules are general, it can be reused by
others with very few modifications. For example, the rule mentioned in section
4.4, can be used to give notifications to all the absent-minded people all over the
world.



Multilingual Information All the information updated by this agent, includ-
ing the proofs, are in RDF. Hence it is readable by people who speak different
languages. This is because at the UI level, the rdfs:label with the correct language
tag of the URIs could be displayed instead of one specific language.

Persistence of Derived Results One of the major objectives of this system
is that the results are made persistent for later reuse. By making these derived
conclusions persistent on a read-enabled Web, we are extending the knowledge
of the world. More importantly this prevents reinventing the wheel, which saves
time and effort.

Provenance Preservation Provenance is an important metric to get an idea
about where a piece of information came from, the stakeholders involved in
generating that piece of information and the trustworthiness of the component
data items used in deriving it. The proof entails where the data came from.
Therefore, by attaching a proof to a particular data item we are preserving
provenance.

3 Use Cases

Much of the adoption of the Semantic Web has resulted from a strong need
to be able to integrate and analyze data across databases, applications, and
communities. It has been fascinating to witness the breadth of solutions that
have been implemented to meet these needs. In this section we outline several
use cases that portray the utility of the Computation Agent that we propose.

3.1 Support Propagation of Changes in Facts

Rules would prove to be very useful if the pieces of data are cached or mirrored at
several different places, and these rules are applied on such data automatically.
For example, there used be a period when the de-facto content type of N3 was
text/rdf+n3. After some discussion, it was changed to text/n3. This became
confusing for new developers, as some user documentation still says the content
type of N3 is text/rdf+n3. If the N3 format has been given a URI and the triple
{<N3 URI> format:content-type “text/rdf+n3”} is stored with the URI and all
the pages are decorated with RDFa, then, when the information changes to <N3
URI> format:content-type “text/n3”, running the above rule on such incorrect
Web pages will identify the errors, update where possible, or notify the owners
for updates for documents which it cannot update.

3.2 Biomedical Data Analysis

Diverse types of data about drugs, patients, diseases, proteins, cells, pathways,
and so on are already being effectively integrated on the linked open data cloud.



Biomedical researchers often need to be able to ask questions that span many
heterogeneous data sources in order to make well-informed decisions that may
lead to important scientific breakthroughs. Once an important relationship has
been found it would be very useful to other researchers to look for the result only
without having to go through the burden of computing it from the beginning. Say
for example, that a biomedical researcher finds out that a very specific symptom
exhibited by patient X is subdued by a drug administered to him over a given
period of time in a specific manner. This leads to the conclusion that the drug
has an improved effectivity in fighting a certain disease. This fact obviously has
some great benefit to other biomedical researchers. Of course one can issue a
SPARQL query to obtain this same piece of information. However, whenever a
researcher finds this fact, if he were to make an assertion and create some new
data reflecting this discovery, it would relieve the others from the burden of doing
the same thing over and over again. Also, for the skeptics of the effectiveness of
this new derived fact of the drug, the derivation tree should be available with
the data as a form of reinforcement.

4 System Design and Implementation

Fig. 2. System Design

The design of the current implementation is given in Fig 2. The ‘Computa-
tion Agent’ includes a ‘Rule Engine’ based on CWM (Closed World Machine)
[5] and an ‘Updater’ which supports SPARQL updates. The User Interface is
implemented on the Tabulator.



4.1 The Proof Vocabulary and Structure

Proof visualization relies upon the proof vocabulary which follows from the
‘Truth Maintenance System (tms)’ vocabulary developed by the TAMI project 4.
In order for Tabulator to understand the proof to render we use the following
proof structure. This is highly customizable, and we envision support for lan-
guages such as Proof Markup Language (PML) [8] in the future.

@prefix tms: <http://dig.csail.mit.edu/TAMI/2007/amord/tms#> .
@prefix doap: <http://usefulinc.com/ns/doap#> .
@prefix doac: <http://ramonantonio.net/doac/0.1/#> .
@prefix swe: <http://dig.csail.mit.edu/2009/06/software_engineering#> .
@prefix ken: <http://dig.csail.mit.edu/People/kennyluck#> .

{ ken:I doac:skill "Javascript" . } #subject, the conclusion in formula
tms:justification #predicate
[ #object, a bnode

tms:antecedent-expr [
a tms:And-justification; #a bnode of And-justification
tms:sub-expr swe#doap2doac-skill , #the ruleURI is optional

{ #the antecedents in formula
<http://dig.csail.mit.edu/2005/ajar/ajaw/data#Tabulator>

doap:developer ken:I;
doap:programming-language "Javascript" .

}
]

] .

The proof given above constitutes two formulae, namely the conclusion and
the antecedent, two blank nodes, and effectively 5 triples. This is written using
Turtle+Formula syntax, which is a subset of the full N3 allowing formulae or
graphs, to be subjects or objects 5. The client store of the proof visualization UI
is required to support formulae as subjects or objects, but some of the full N3
constructs such as variables and quantification are not needed.

4.2 The Proof Update Protocol for the Computing Agent

The update protocol is adapted from the SPARQL Update protocol as described
in the Tabulator-Redux [20]. This includes sending SPARQL queries via HTTP

4 The current proof vocabulary may be revised in the future to make the proofs less
verbose, and more human readable. However, even if the vocabulary changes, the
changes expected in our system are at a bare minimum, and we expect the client
implementation to be backwards compatible. (Project URI: http://dig.csail.mit.
edu/TAMI/)

5 As specified in the Design Issues Note for N3. See http://www.w3.org/

DesignIssues/diagrams/n3/venn



POST with the MIME type “application/sparql-query”. For example, the fol-
lowing code snippet illustrates the update of the triple which says that the per-
son identified by the URI <http://dig.csail.mit.edu/People/kennyluck#
I> has Javascript skills.

POST /path-of-updatable-document HTTP/1.1
Content-Type: application/sparql-query

PREFIX ken <http://dig.csail.mit.edu/People/kennyluck#> .
PREFIX doac <http://ramonantonio.net/doac/0.1/#> .
INSERT { ken:I doac:skill "Javascript" . }

A consistent extension of SPARQL Update should allow subjects and objects
to be graphs or formulae 6. But SPARQL Update is not standardized and widely
adopted yet. Therefore, we chose the following workaround in order to reduce
the amount of work on the SPARQL Update server by introducing an additional
HTTP Header called ‘X-Meta’:

POST /path-of-updatable-document HTTP/1.1
Content-Type: application/sparql-query
X-Meta: http://dig.cail.mit.edu/proof-tmp-storage/3deDQp

PREFIX ken <http://dig.csail.mit.edu/People/kennyluck#> .
PREFIX doac <http://ramonantonio.net/doac/0.1/#> .
INSERT { ken:I doac:skill "Javascript" . }

This means that we give the SPARQL Update server a URI link to the
generated temporary proof. Notice that one disadvantage of this is that the
computing agent has to have the power to write on the Web. As a multi-threaded
application, the agent sends the data along with a pointer to the proof as long as
a deduction is made. In the mean time, the crawling threads will be continuously
fetching more data on the Web.

4.3 Providing Proofs from a Server and Retrieving Proofs from a
Client

The current proof providing mechanism uses the standard HTTP content nego-
tiation protocols. If the client store has the ability to store triples with formula
subject or object, when fetching a document, the client’s HTTP Accept header
contains the content type representing the N3 format, namely text/n3, the server
sends a big document containing proofs of some of the information in the docu-
ment. If the client store only does flat RDF, the server sends a small document,
with all the proofs removed from the big document. The proposed mechanism
of proof transfer uses extra HTTP header as follows:

6 See Section 6 for a more comprehensive discussion on this.



GET /data-file HTTP/1.1

HTTP/1.1 200 OK
Link: http://dig.csail.mit.edu/meta-file-for-data-file

<data-file-content>

The ‘Link’ header points to a meta file of the data file containing the infor-
mation about the data file, and the client can fetch the meta file afterwards.
The advantage of this approach is that it preserves the integrity of the data
file. Notice that the Link header is not yet standardized and as far we know, no
existing HTTP server uses this mechanism yet. It is also not implemented in our
system yet.

4.4 User Interface

Fig. 3. User Interface Showing the Existence of Proof

Simple Proofs Fig 3 shows what the user interface of the system looks like on
Tabulator. The ‘question mark’ symbol indicates that there is a proof associated
with the corresponding triple. It is expected that the user will click on this
icon and explore the proof using Tabulator’s ‘Justification UI’. The x n next
to the question mark symbolizes how many proofs that particular triple has.
Higher the number, more proofs supporting this particular triple, and hence
more trustworthy the fact represented by the triple becomes.



Fig. 4. User Interface on Tabulator Showing the Reasons behind the Conclusion Given

Once the question mark icon is clicked the justification of that particular
triple will be displayed as shown in Fig 4. In this particular example, the user has
clicked the question mark icon next to the triple which says ‘Timothy Berners-
Lee’ is a ‘Developer’ of the Tabulator project given in Fig 3. The justification of
this fact consists of recent commits that he has done to the Tabulator version
control system. Reason 1 of the justification gives a particular commit revision
of which ‘Timothy Berners-Lee’ is the creator of, and so on.

Chained Proofs Our system is capable of handling proof chaining as well. Let
us illustrate this with a simple example. Suppose there are few rules as follows:

– If a person commits to a project, that person must be a developer of the
project.

– If a person is a developer of a project and that project uses a programming
language Y. Then that person must have the skill of programming in Y.

– If a person made a document, which lists some information but not complete,
and there are some new information about a fact in the document, then that
person should update the document.

The ‘should’ information in the last rule is encoded in the form of a RSS feed.
Therefore once the last rule is fired, this feed would be sent to the person’s
personal RSS reader. Notice the fact that an RSS 1.0 channel is also a valid
RDF/XML document. The scenario, as experienced by the user, is illustrated in
Fig 5:

1. Our user will see that there is an event called “TODO: You should update
the document”.



Fig. 5. Example of a Scenario which involves several Chained Proofs

2. Once he clicks on it, he will see all the information associated with it in
the Tabulator outline view. Further, he notices that some of the triples have
some derivations (question marks along with the triples).

3. He clicks on the question mark for the triple <the event> handler ‘KangHao
Lu’, and sees more information on the justification UI. This gives the reasons
for why he is the handler of the event. This includes 5 facts. These facts are
stacked in the order of derivation (and thus reads from bottom to top). The
first fact indicates that KangHao Lu’s CV has a particular URI. The second
fact says that the CV includes a ‘skill’ category. The third fact indicates that
these skills do not include ‘Javascript’. The fourth fact says that the creator
of the CV is KangHao Lu, and the final fact says that KangHao Lu is skilled
in Javascript. Notice that there is a question mark next to the last triple.

4. Once you click on the question mark to learn why ‘KangHao Lu’ has skills
in Javascript, the proofs for that is appended. In this case it happens to be



that he is a developer of Tabulator, and the primary programming language
used in Tabulator is Javascript. There is again a question mark next to the
triple Tabulator developer ‘KangHao Lu’. By clicking on that, we learn the
proof for this fact. in this case, it happens to be that ‘KangHao Lu’ has
committed to the Tabulator project.

The last rule of this chain of deduction is implemented with the following
simplified N3 rule:

@prefix log: <http://www.w3.org/2000/10/swap/log#> .
@prefix doape: <http://dig.csail.mit.edu/2007/wiki/doapextension#> .

@forAll :subject, :predicate, :object .
{ ?document dc:creator ?person .

:subject :predicate :object .
?document log:semanticsIncludes { :subject :predicate [] . } .
?document log:notSemanticsIncludes { :subject :predicate :object .} . }

=>
{ [ a rss:item;

rss:title "TODO: You should update the document";
doape:handler ?person;
doape:relatedSource ?document ] . }.

This rule means that if a document has the triple “{ s } { p } { o1 } .”, but
does not have the triple “{ s } { p } { o2 } .”, which we assume is available at
another source, then the creator of this document is responsible for making this
modification and a notification for an RSS item is generated.

Misc: Links to the source code and demos of the implementation given in
this paper 7 can be found at: http://dig.csail.mit.edu/2009/Papers/ISWC/
lod-computations/README

5 Related Work

AIR (Accountability In RDF) [12] a policy language that exploits a dependency
tracking approach to generate proofs with quasi-natural language explanations
for a given policy and a log file. AIR policies are represented in Turtle [3],
which is a human readable syntax for RDF, and include the quoting feature of
N3Logic [4]. AIR consists of an ontology and a reasoner, which when given a
set of policies and data in Turtle, attempts to compute compliance of the data
with respect to the policies. Each computed compliance result has an associated
explanation in Turtle outlining the derivation of the result from the inputs. The
AIR reasoner is only capable of generating a proof at a document level, but not at
7 The URI of this paper is http://dig.csail.mit.edu/2009/Papers/ISWC/

lod-computations/paper. Feel free to link to this in the LOD cloud!



the triple level. Also, it does not have the capabilities to update a corresponding
file as in our method.

Proof Markup Language (PML) is a general proof language or “proof in-
terlingua” that is used to describe proof steps generated by different kinds of
reasoning engines. Inference Web (IW) provides a framework for displaying and
manipulating proofs defined in Proof Markup Language (PML) [15]. IW con-
centrates on displaying proofs whereas our approach is for both generating and
displaying proofs. We also allow chaining of proofs so that they can be explored
recursively.

Although it is outside of the domain of Semantic Web, we can draw a strong
analogy between our work and the the work done by Bill Lewis on the Omniscient
Debugging concept [14]. Omniscient Debugging is the idea of collecting “time
stamps” at each “point of interest” (setting a value, making a method call,
throwing/catching an exception) in a program and then allowing the programmer
to use those time stamps to explore the history of that program run. Similar to his
idea, our “Social Computing Agent” performs computations and at a particular
“point of interest” generates a useful triple and updates the document where the
triple fits along with the proof of how it was derived.

SPARQL queries currently support for querying multiple graphs. Quilitz et
al [17] describe an optimized method for querying distributed RDF data sources
with SPARQL using their DARQ8 implementation. Schenk et al [18] describe a
way for linking user generated content on the Semantic Web. Yars2 (Yet Another
RDF Store, Version 2) [11] presents an end-to-end semantic search engine that
uses a graph data model to enable interactive query answering over structured
and interlinked data collected from many disparate sources on the Web. Zhao et
al [22] describe various design patterns for representing and querying provenance
information relating to mapping links between heterogeneous data from sources
in the domain of functional genomics. Their work illustrates the use of named
RDF graphs at different levels of granularity to make provenance assertions
about linked data. It also demonstrates that these assertions are sufficient to
support requirements including data currency, integrity, evidential support and
historical queries. While all the work mentioned above are analogous to the work
we have done in gathering information from several sources, our ‘Computation
Agent’ is able to find information that matches as long as such information is
available. In addition, all of those works described above do not support SPARQL
updates.

6 Future Work

We envision SPARQL/Update to be the most important communication protocol
in the future. Here we briefly list some of the future work we consider interesting.

8 http://darq.sf.net



Proof-based Content Filtering: Different from normal machine learning-
based content filtering schemes, which are more of less based on heuristics,
SPARQL Update + Proofs provides a logical way of content filtering. We can
implement a SPARQL Update receiver agent that validates proofs or checks
whether the rule generating this new information is in its white list of rules.
As rules have URIs and are part of the Linked Data, meta information of rules
allows the agent to do more things, for example, building the white list of rules
from rules that have more than certain number of supporters.

SPARQL Update + Proofs is machine readable, traceable and multilingual.
We believe it has the potential of replacing email in certain circumstances, for
example in sending bug reports.

Linked Data Garbage Collector(s): Consider the following example which
illustrates a case for maintenance of the Web by removing unreferenced and
unwanted data:

A

B

A

B

A

B

A

B

C C C C

Fig. 6. Phases of a Linked Data GC example

Node A is the statement “Kenny is a member of the DIG group”, Node B is
“Kenny is a developer of Tabulator”, Node C is “Kenny has the access right to
the Tabulator repository” and the links represent the proofs. In the first phase,
the statement “Kenny is a member of the DIG” is deleted, so in the second phase
the proof that has Node A as an antecedent is also deleted. But at this point,
Node C is still supported by a proof and hence remains existing. During the last
phase, all the proofs of Node C, the statement “Kenny has the access right to
the Tabulator repository”, are no longer existing. Therefore we can remove this
statement.

As Web is a decentralized system and there are a lot of information getting
deleted at a particular time, the Web incorporated with this system can be
imagined as a huge memory space with lots of garbage collectors. Few technical
challenges remain:

1. Should servers or crawler clients send these removing notifications? Maybe
both?

2. How does this system deal with cyclic dependency? 9

9 This is also a well known problem in programming GC.



Mechanism and User Interface for Grading Triples: As pointed out in
section 2.2, the current implementation of user interface displays values of triples
by naively counting the number of proofs. More grading algorithms should be
created and provided to the end user in a customizable way. A a simple next
step would be grading a proof with numbers of supporters of the corresponding
rule. Google’s Page Rank is also a possibility, namely strong statements proves
strong results. However, it requires collaboration of different servers.

Other future works include:

– Extend SPARQL Update consistently to include updating formulae or graphs
– Implement the HTTP Link Header both on the server-side and the client-side
– Visualization for statements with cyclic dependency
– Upgrade Computing Agent with support for more rule formats, Including

AIR [12] and RIF [21]

7 Conclusion

The ultimate vision of the Semantic Web is to make it an immortal brain where
the computers work as if they were neurons [6]. Before wikis and blogs became
popular, the Web had been basically a read-only medium and the machines did
not resemble anything close to communicating neurons. This is perhaps due to
the fact that HTML is not flexible enough for updating. This project investigated
methods and protocols for updating the “Data Web”, a Web with RDF as it’s
main data format. We described some protocols for achieving this. All these
decisions are far from being standardized. Therefore, they are subject to change,
but we expect later versions of the current implementation to be backwards
compatible. The never ending crawler and updater demonstrates that the Web
can be designed to think and learn by itself. The garbage collecting paradigm,
as described in section 6, demonstrates a reasonable way in which certain parts
of the Data Web could be programmed to forget. We believe that proofs on the
Web will eventually weave into a Truth Maintenance System and that updating
the proofs back to the Data Web will be a key point for achieving the Web
Intelligence.
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