
mindswap
maryland information and network dynamics lab semantic web agents project

A Logic-Based Framework for
Distributed Access Control

Vladimir Kolovski
Oracle New England Development Center

1 Oracle Drive, Nashua, NH

mindswap
maryland information and network dynamics lab semantic web agents project

2

Characteristics of Distributed Access Policies
• Attribute-based

– Identity of users not always known

• Heterogeneous
– Different protection requirements
– Rich data-type support, conflict resolution mechanisms

• Distributed
– References between policies

• Policy Language Proposals
– Industry: EPAL (IBM), XACML (Sun), SecPal (MSFT)
– Academia: Cassandra (Becker 2006), RT (Li 2003), FAF (Jajodia 2001),

Lithium (Weissman 2003), DL (Li 2001), Rei(n) (Kagal 2003)

mindswap
maryland information and network dynamics lab semantic web agents project

3

eXtensible Access Control Markup Language (XACML)

• Language with a lot of momentum
– OASIS standard since 2003
– Supports distributed policies, data-types, conflict

resolution
• Industry interest

– 65 public products and deployments that make
substantial use of XACML

• Academic interest
– 200+ papers citing the XACML Standard

mindswap
maryland information and network dynamics lab semantic web agents project

4

Motivation(1): Lack of a Logic-Based

• XACML lacks an official formal semantics
– Unclear and ambiguous specification

• Especially newer features
– Unknown complexity properties

• Is access request checking even tractable?
• Want to know which features cause problems

– Want to compare and extend XACML
• Research work in logic-based access control
• Experiment with adding new features

mindswap
maryland information and network dynamics lab semantic web agents project

5

Motivation(2): XACML Policies Hard to

 “When I sat down to support complex policy
requirements in a real-world application using a
custom database and attribute retrieval
system, it was hard....Just understanding the
implications of all the policy references and
each target on a rule took a lot of effort.”

mindswap
maryland information and network dynamics lab semantic web agents project

5

Motivation(2): XACML Policies Hard to

 “When I sat down to support complex policy
requirements in a real-world application using a
custom database and attribute retrieval
system, it was hard....Just understanding the
implications of all the policy references and
each target on a rule took a lot of effort.”

-Seth Proctor, one of the
designers of XACML

mindswap
maryland information and network dynamics lab semantic web agents project

6

Research Contribution

 A logic-based framework that provides a

theoretical foundation for XACML and a
practical set of static analysis services that
cover heterogeneous and distributed
XACML policies

mindswap
maryland information and network dynamics lab semantic web agents project

7

Logic-Based Foundation for XACML

mindswap
maryland information and network dynamics lab semantic web agents project

8

Approach: Use Datalog to Formalize XACML
• Datalog is a query and rule language for

deductive databases
– A Datalog program consists of rules and facts

• Desirable computational properties
• Foundation for many access control

languages
– SecPal [Becker2006], FAF [Jajodia2001],

Delegation Logic [Li2001], RT [Li2003],
PeerTrust [Nejdl2004], etc.

mindswap
maryland information and network dynamics lab semantic web agents project

9

Mapping XACML to Datalog(1)
1. Generate facts (extensional predicates) from policy

structure
<Policy PolicyId="policy1" RuleCombiningAlgId=“…rule-combining-algorithm:first-applicable">
 <Target>
 <DisjunctiveMatch>
 <ConjunctiveMatch>
 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType=“…XMLSchema#string">admin</AttributeValue>
 <AttributeDesignator Category=“…subject-category:access-subject" AttributeId="role"

DataType=“…XMLSchema#string"/>
 </Match>
 </ConjunctiveMatch>
 </DisjunctiveMatch>
 </Target>
 <Rule RuleId="rule1" Effect="Permit"> <Target/>
 </Rule>
</Policy>

Generated predicates:
hasRule(policy1, rule1)

hasTarget(policy1, target-id)

hasEffect(rule1, Permit)

hasMatch(target-id, match-id)

hasMatchFunction(match-id,
‘string-equal’), …

mindswap
maryland information and network dynamics lab semantic web agents project

10

Mapping XACML to Datalog (2)
2. Datalog rules to match access requests against

Targets (10 rules)
Example:
matchAD(?AD; ?RQ; ?V) :– hasAttribute(?RQ; ?AT), hasValue(?AT; ?V)
 hasAttrID(?AD; ?id), hasAttrID(?AT; ?id)
 hasCat(?AT; ?cat), hasCat(?AD; ?cat).

matchM(?M; ?RQ) :– matchAD(?AD; ?RQ; ?V), hasValue(?M; ?VM);
 fcn(?V; ?VM) = True.

3. Predicates for access decisions
• PolicySets: Permit-PS(?X, ?RQ), Deny-PS(?X, ?RQ)
• Policies: Permit-P(?X, ?RQ), Deny-P(?X, ?RQ)
• Rules: Permit-R(?X, ?RQ), Deny-R(?X, ?RQ)

mindswap
maryland information and network dynamics lab semantic web agents project

11

Mapping XACML to Datalog (3)
4. Generate Datalog rules to propagate access decisions

• Propagate from Rules to Policies and PolicySets
• Each combining algorithm provides a different set of

propagation rules
• Example of a Permit-overrides propagation:

Deny-P(?P, ?RQ) :- hasTarget(?P, ?T), matchT(?T, ?RQ)
 hasRule(?P,?R), Deny-R(?R, ?RQ)
 hasComb(?P, Permit-Overrides),

 :Permit-P(?P, ?RQ).

5. Translate each request RQ to a set of facts and run
against Datalog KB

mindswap
maryland information and network dynamics lab semantic web agents project

12

Mapping Results
• Mapping XACML Policies and Rules produces a

locally stratified Datalog program
– Ordering:
 Match predicates < Rule predicates < Policy predicates

• Cyclical references between PolicySets break
stratifiability restriction
– Multiple models (or no model) possible, depending on

order of evaluation
• Ambiguous policies!

– Disallowing cyclical PolicySet references brings XACML
down do polynomial complexity

mindswap
maryland information and network dynamics lab semantic web agents project

13

Mapping Implications
• Compared XACML to well-studied Datalog-

based policy frameworks
– Flexible Authorization Framework

[Jajodia2001], SecPal [Becker2006] (more)
• Can extend XACML with features from other

languages without sacrificing complexity
– E.g., role hierarchies currently implicit in policy

rules
• Results in incomplete hierarchy support

mindswap
maryland information and network dynamics lab semantic web agents project

14

Example* of incomplete role hierarchy support
• Three roles: Doctor, Nurse, Admin

– Doctor role is senior to Nurse and Admin
• Two permission sets (for Nurse and Admin)
• Consider a new permission (RegisterNewPatient) is added

– RegisterNewPatient requires users to activate both Nurse and Admin
role

– XACML will not automatically infer that Doctors are linked to this new
permission

• Solution
– Separate role hierarchy information from policy in XACML
– Extend semantics by augmenting Datalog mapping with role hierarchy

rules
*D. J. Power et al. On XACML, role-based access control, and health grids. The 4th
UK e-Science AHM, 2005.

mindswap
maryland information and network dynamics lab semantic web agents project

15

Practical Analysis Services for Policies

mindswap
maryland information and network dynamics lab semantic web agents project

16

Problem: Analysis of XACML Policies
• Interest in providing static analysis services for

XACML
• Previous work with limited expressiveness

– Lacks support for delegation, data-types, policy
vocabularies

– Cannot analyze distributed and heterogeneous policies
• Contribution: developed static analysis framework for

expressive XACML policies
– Provided formal verification, change analysis, reachability

analysis, checking for disjoint policies, etc.

mindswap
maryland information and network dynamics lab semantic web agents project

17

Testing vs Formal Verification

• Test case: Developers are not allowed to write to
File

• Testing not exhaustive
– E.g., Developer requests to both write to and read from

File

mindswap
maryland information and network dynamics lab semantic web agents project

18

Approach: OWL-DL for XACML Analysis
• Web Ontology Language (OWL)

– Language for representing the semantics of
information on the Web

• Developed through the W3C Semantic Web
initiative
– W3C published OWL as a recommendation (Feb

2004)
• Design based on Web architecture
• Comes in three different levels: Lite, DL, Full

mindswap
maryland information and network dynamics lab semantic web agents project

19

Why OWL-DL for XACML Analysis?
• Policy analysis services reduced to DL reasoning

tasks
– Exist off-the-shelf DL reasoners optimized for those tasks

• Pellet, FaCT++, RacerPro, KAON2

• Web-based nature of OWL great fit for XACML
• OWL provides support for rich policy domain modeling

and interoperability
– Already interest in semantic-enabled XACML [Priebe06,

Damiani04]

mindswap
maryland information and network dynamics lab semantic web agents project

20

Mapping XACML to OWL-DL: Overview
• Access requests are mapped to OWL individuals

– XACML attributes -> OWL properties
– XACML values -> OWL datatype values

• Rules, Policies and PolicySets mapped to OWL classes

• Generate OWL classes to capture XACML access decisions
– E.g., for each Rule R: Permit-R, Deny-R classes
– Combine concepts: Permit-R1 u :Deny-R2

• Propagate access decisions using subclass and equivalence
axioms
– Depending on combining algorithm

*For details see: Vladimir Kolovski et al. Analyzing Web Access Control Policies. In Proceedings of
the 16th International World Wide Web Conference (WWW 2007), 2007.

mindswap
maryland information and network dynamics lab semantic web agents project

21

Formal Verification
• Used DL concept satisfiability checking for

verification
– DL concept generated based on input policy, test

case and expected outcome
• If test fails, extract counter example from

model
– Return access request that causes test failure

• Extract policy trace
– Return a list of policies that fired and produced test

failure

mindswap
maryland information and network dynamics lab semantic web agents project

22

Formal Verification Example

• Test case:
– role=Developer, action=write, resource=File; outcome=NeverPermit

• Counterexample:
– role=Developer, action=read, action=write, resource=File

• Policy trace:
– R2 (Permit) -> P1 (Permit)

mindswap
maryland information and network dynamics lab semantic web agents project

23

Change Analysis
• Policy diffing

– Example: Are there any requests where policy
P1 returns Deny, and P2 returns Permit?

• Also, verify changes
– Example: Verify that Deny-to-Permit changes do

not involve role Developer?
• Reduced to satisfiability checking

– OWL-DL reasoners optimized for this service

mindswap
maryland information and network dynamics lab semantic web agents project

24

Additional Analysis Services
• Reachability Analysis (redundancy checking)

– Check if a policy is “dominated” by others
– Can be used to optimize policy engines

• Disjointness
– Verify that no request applies to both policies

• Explanation for policy errors
– Leverage OWL-DL debugging support

mindswap
maryland information and network dynamics lab semantic web agents project

25

Analyzing Web Service Policies

mindswap
maryland information and network dynamics lab semantic web agents project

26

Applying Analysis Framework to Web Services
• Web Service Policies

– Specify constraints and capabilities of web service
providers and clients

• WS-Policy is becoming a W3C standard
– WS-XACML provides a language for WS-Policy assertions

• Policies are mapped to OWL-DL class expressions
– Analysis services: verification, change analysis,

consistency checking

*For details see: Vladimir Kolovski et al. Representing Web Service Policies in OWL DL. In Proc. of
the 4th International Semantic Web Conference (ISWC), 2005.

mindswap
maryland information and network dynamics lab semantic web agents project

27

Empirical Results

mindswap
maryland information and network dynamics lab semantic web agents project

28

Two-Part Evaluation
1. Compare against fastest XACML analyzers

– Margrave (BDD-based), HSAT(SAT-based)
– Test suite containing real XACML policies

• Continue, Network, Fedora, GAAA, eXist
• Policies selected within expressiveness of HSAT

and/or Margrave
2. Show approach is practical for expressive,

real-world policy use cases
– NASA HQ Data Access Use Case
– HL7 Health care policy

mindswap
maryland information and network dynamics lab semantic web agents project

29

Empirical Results

• Tested formal verification and policy
comparison
– Simulated test cases based on policy attributes

1

6

32

178

1000

eXist Network Fedora GAAA Continue

Lo
ad

in
g/

R
ew

rit
in

g
Ti

m
e

(s
ec

.)

Policy

HSAT
DL
Margrave

1

2

3

6

10

eXist Network Fedora GAAA Continue

Ve
rif

ic
at

io
n

Ti
m

e
(s

ec
)

Policy

HSAT
DL
Margrave

mindswap
maryland information and network dynamics lab semantic web agents project

30

NASA Federated Data Access Use Case
• Collaboration with NASA HQ

– OWL is already being used at NASA (POPS, BIANCA)
– NASA interested in XACML+OWL for access control

• Data integration app BIANCA as an example
– Developed a set of access policies for BIANCA
– Subjects and resources taken from the NASA Taxonomy

• Resulting XACML policy
– 4 policy sets (3 departments and 1 general)

• Each department has 10-15 XACML policies
– RBAC with data-types and ontology extensions

*For details see: Michael Smith et al. Mother May I? OWL-Based Policy Management at NASA. In
Proc. Of the 3rd International Workshop on OWL: Experiences and Directions (OWLED), 2007.

mindswap
maryland information and network dynamics lab semantic web agents project

31

Empirical Results

0

2.5

5.0

7.5

10.0

5 roles 10 roles 20 roles 50 roles

Q1 Analysis Time

 V
er

ifi
ca

tio
n

Ti
m

e

Size of NASA Policy (roles)

Loading
Verification

0

2.5

5.0

7.5

10.0

5 roles 10 roles 20 roles 50 roles

Q2 Analysis Time

Ve
rif

ic
at

io
n

Ti
m

e
(s

ec
)

Size of NASA policy (roles)

Loading
Verification

0

2.5

5.0

7.5

10.0

5 roles 10 roles 20 roles 50 roles

Q3 Analysis Time

Ve
rif

ic
at

io
n

tim
e

(s
ec

)

Size of NASA Policy

Loading
Verification

mindswap
maryland information and network dynamics lab semantic web agents project

32

HL7 Healthcare Policy
• Health Level 7 Standard

– Push towards open standards for electronic health records
– Access control crucial in this scenario

• Contains a set of RBAC permissions, constraints and
scenarios
– 39 RBAC scenarios represent an instance of a health information

system policy
• HL7 policy

– Hierarchical RBAC with constraints and data-types
– Vocabulary domains (role hierarchy in OWL)

• Converted to HL7 policy to XACML
– 107 Policy sets, 100+ attribute values

mindswap
maryland information and network dynamics lab semantic web agents project

33

Empirical Results

0

15

30

45

60

HL7 HL7x2 HL7x3 HL7x4 HL7x5

Formal Verification of HL7

A
na

ly
si

s
Ti

m
e

(s
ec

)

Size of Policy

Loading
Verification

0

37.5

75.0

112.5

150.0

HL7 HL7x2 HL7x3 HL7x4 HL7x5

Policy Comparison of HL7

A
na

ly
si

s
Ti

m
e

(s
ec

)

Size of Policy

Loading
Comparison

• Tested on original policy and synthetic extensions
(more)

• Results demonstrate performance practical for
compile-time analysis

mindswap
maryland information and network dynamics lab semantic web agents project

Conclusions & Future Work

mindswap
maryland information and network dynamics lab semantic web agents project

35

Contributions
• XACML Semantics and Complexity Results

– Complexity bounds and comparison of XACML to other
logic-based languages

• Developed a static analyzer for XACML policies
– Demonstrated analyzer is practical for large and

expressive policy sets
• Showed framework is applicable to other domains

– Formalized and analyzed WS-Policy and WS-XACML

mindswap
maryland information and network dynamics lab semantic web agents project

36

Future Work
• Extend reachability analysis

– Find all minimal reachable sets of policies
• Policy repair service

– Develop techniques for ‘fixing’ policies
• E.g., find a minimal set of constraints to be added s.t.

policy satisfies a set of test conditions

• Analyze more expressive policies
– Obligations and Dynamic Policies
– Business rules

mindswap
maryland information and network dynamics lab semantic web agents project

37

Questions

Thank You

