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Characteristics of Distributed Access Policies
• Attribute-based

– Identity of users not always known

• Heterogeneous
– Different protection requirements
– Rich data-type support, conflict resolution mechanisms

• Distributed
– References between policies

• Policy Language Proposals
– Industry: EPAL (IBM), XACML (Sun), SecPal (MSFT)
– Academia: Cassandra (Becker 2006), RT (Li 2003), FAF (Jajodia 2001), 

Lithium (Weissman 2003), DL (Li 2001), Rei(n)  (Kagal 2003)
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eXtensible Access Control Markup Language (XACML)

• Language with a lot of momentum
– OASIS standard since 2003
– Supports distributed policies, data-types, conflict 

resolution
• Industry interest

– 65 public products and deployments that make 
substantial use of XACML

• Academic interest
– 200+ papers citing the XACML Standard
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Motivation(1): Lack of a Logic-Based 

• XACML lacks an official formal semantics
– Unclear and ambiguous specification

• Especially newer features
– Unknown complexity properties

• Is access request checking even tractable? 
• Want to know which features cause problems

– Want to compare and extend XACML
• Research work in logic-based access control
• Experiment with adding new features
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Motivation(2): XACML Policies Hard to 

   “When I sat down to support complex policy 
requirements in a real-world application using a 
custom database and attribute retrieval 
system, it was hard....Just understanding the 
implications of all the policy references and 
each target on a rule took a lot of effort.”
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Motivation(2): XACML Policies Hard to 

   “When I sat down to support complex policy 
requirements in a real-world application using a 
custom database and attribute retrieval 
system, it was hard....Just understanding the 
implications of all the policy references and 
each target on a rule took a lot of effort.”

-Seth Proctor, one of the 
designers of XACML
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Research Contribution
  
 A logic-based framework that provides a 

theoretical foundation for XACML and a 
practical set of static analysis services that 
cover heterogeneous and distributed 
XACML policies
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Logic-Based Foundation for XACML
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Approach: Use Datalog to Formalize XACML
• Datalog is a query and rule language for 

deductive databases
– A Datalog program consists of rules and facts

• Desirable computational properties
• Foundation for many access control 

languages
– SecPal [Becker2006], FAF [Jajodia2001], 

Delegation Logic [Li2001], RT [Li2003], 
PeerTrust [Nejdl2004], etc.
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Mapping XACML to Datalog(1)
1. Generate facts (extensional predicates) from policy 

structure
<Policy PolicyId="policy1" RuleCombiningAlgId=“…rule-combining-algorithm:first-applicable">
    <Target>
      <DisjunctiveMatch>
        <ConjunctiveMatch>
          <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
            <AttributeValue DataType=“…XMLSchema#string">admin</AttributeValue>
            <AttributeDesignator Category=“…subject-category:access-subject"   AttributeId="role" 

DataType=“…XMLSchema#string"/>
          </Match>
        </ConjunctiveMatch>
      </DisjunctiveMatch>      
    </Target>
    <Rule RuleId="rule1" Effect="Permit">  <Target/> 
     </Rule>
</Policy>

Generated predicates:
hasRule(policy1, rule1)

hasTarget(policy1, target-id)

hasEffect(rule1, Permit)

hasMatch(target-id, match-id)

hasMatchFunction(match-id, 
‘string-equal’), …
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Mapping XACML to Datalog (2)
2. Datalog rules to match access requests against 

Targets (10 rules)
Example:
matchAD(?AD; ?RQ; ?V) :–  hasAttribute(?RQ; ?AT), hasValue(?AT; ?V)
    hasAttrID(?AD; ?id), hasAttrID(?AT; ?id) 
    hasCat(?AT; ?cat), hasCat(?AD; ?cat).

matchM(?M; ?RQ)       :–  matchAD(?AD; ?RQ; ?V), hasValue(?M; ?VM);
    fcn(?V; ?VM) = True.

3. Predicates for access decisions
• PolicySets: Permit-PS(?X, ?RQ), Deny-PS(?X, ?RQ)
• Policies:      Permit-P(?X, ?RQ), Deny-P(?X, ?RQ)
• Rules:         Permit-R(?X, ?RQ), Deny-R(?X, ?RQ)



mindswap
maryland information and network dynamics lab semantic web agents project

11

Mapping XACML to Datalog (3)
4. Generate Datalog rules to propagate access decisions

• Propagate from Rules to Policies and PolicySets
• Each combining algorithm provides a different set of 

propagation rules
• Example of a Permit-overrides propagation:

Deny-P(?P, ?RQ) :- hasTarget(?P, ?T), matchT(?T, ?RQ) 
   hasRule(?P,?R),  Deny-R(?R, ?RQ) 
   hasComb(?P, Permit-Overrides),

   :Permit-P(?P, ?RQ).

5. Translate each request RQ to a set of facts and run 
against  Datalog KB
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Mapping Results
• Mapping XACML Policies and Rules produces a 

locally stratified Datalog program
– Ordering:
   Match predicates < Rule predicates < Policy predicates

• Cyclical references between PolicySets break 
stratifiability restriction
– Multiple models (or no model) possible, depending on 

order of evaluation
• Ambiguous policies!

– Disallowing cyclical PolicySet references brings XACML 
down do polynomial complexity
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Mapping Implications
• Compared XACML to well-studied Datalog-

based policy frameworks
– Flexible Authorization Framework 

[Jajodia2001], SecPal [Becker2006] (more)
• Can extend XACML with features from other 

languages without sacrificing complexity
– E.g., role hierarchies currently implicit in policy 

rules
• Results in incomplete hierarchy support
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Example* of incomplete role hierarchy support
• Three roles: Doctor, Nurse, Admin 

– Doctor role is senior to Nurse and Admin
• Two permission sets (for Nurse and Admin)
• Consider a new permission (RegisterNewPatient) is added

– RegisterNewPatient requires users to activate both Nurse and Admin 
role

– XACML will not automatically infer that Doctors are linked to this new 
permission

• Solution
– Separate role hierarchy information from policy in XACML
– Extend semantics by augmenting Datalog mapping with role hierarchy 

rules 
*D. J. Power et al. On XACML, role-based access control, and health grids. The 4th 
UK e-Science AHM, 2005.
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Practical Analysis Services for Policies
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Problem: Analysis of XACML Policies
• Interest in providing static analysis services for 

XACML
• Previous work with limited expressiveness

– Lacks support for delegation, data-types, policy 
vocabularies

– Cannot analyze distributed and heterogeneous policies
• Contribution: developed static analysis framework for 

expressive XACML policies
– Provided formal verification, change analysis, reachability 

analysis, checking for disjoint policies, etc.
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Testing vs Formal Verification

• Test case: Developers are not allowed to write to 
File

• Testing not exhaustive
– E.g., Developer requests to both write to and read from 

File
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Approach: OWL-DL for XACML Analysis
• Web Ontology Language  (OWL)

– Language for representing the semantics of 
information on the Web

• Developed through the W3C Semantic Web 
initiative
– W3C published OWL as a recommendation (Feb 

2004)
• Design based on Web architecture
• Comes in three different levels: Lite, DL, Full
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Why OWL-DL for XACML Analysis?
• Policy analysis services reduced to DL reasoning 

tasks
– Exist off-the-shelf DL reasoners optimized for those tasks

• Pellet, FaCT++, RacerPro, KAON2

• Web-based nature of OWL great fit for XACML
• OWL provides support for rich policy domain modeling 

and interoperability
– Already interest in semantic-enabled XACML [Priebe06, 

Damiani04]
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Mapping XACML to OWL-DL: Overview
• Access requests are mapped to OWL individuals  

– XACML attributes -> OWL properties
– XACML values    -> OWL datatype values

• Rules, Policies and PolicySets mapped to OWL classes

• Generate OWL classes to capture XACML access decisions
– E.g., for each Rule R: Permit-R, Deny-R classes
– Combine concepts: Permit-R1 u :Deny-R2

• Propagate access decisions using subclass and equivalence 
axioms
– Depending on combining algorithm

*For details see: Vladimir Kolovski et al. Analyzing Web Access Control Policies. In Proceedings of 
the 16th International World Wide Web Conference (WWW 2007), 2007.
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Formal Verification
• Used DL concept satisfiability checking for 

verification
– DL concept generated based on input policy, test 

case and expected outcome
• If test fails, extract counter example from 

model
– Return access request that causes test failure

• Extract policy trace
– Return a list of policies that fired and produced test 

failure
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Formal Verification Example

• Test case: 
– role=Developer, action=write, resource=File; outcome=NeverPermit

• Counterexample:
– role=Developer, action=read, action=write, resource=File

• Policy trace:
– R2 (Permit) -> P1 (Permit)
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Change Analysis
• Policy diffing

– Example: Are there any requests where policy 
P1 returns Deny, and P2 returns Permit?

• Also, verify changes
– Example: Verify that Deny-to-Permit changes do 

not involve role Developer?
• Reduced to satisfiability checking

– OWL-DL reasoners optimized for this service
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Additional Analysis Services
• Reachability Analysis (redundancy checking)

– Check if a policy is “dominated” by others
– Can be used to optimize policy engines

• Disjointness
– Verify that no request applies to both policies

• Explanation for policy errors
– Leverage OWL-DL debugging support
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Analyzing Web Service Policies
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Applying Analysis Framework to Web Services
• Web Service Policies

– Specify constraints and capabilities of web service 
providers and clients

• WS-Policy is becoming a W3C standard
– WS-XACML provides a language for WS-Policy assertions

• Policies are mapped to OWL-DL class expressions
– Analysis services: verification, change analysis, 

consistency checking

*For details see: Vladimir Kolovski et al. Representing Web Service Policies in OWL DL. In Proc. of 
the 4th  International  Semantic Web Conference (ISWC), 2005.
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Empirical Results



mindswap
maryland information and network dynamics lab semantic web agents project

28

Two-Part Evaluation
1. Compare against fastest XACML analyzers

– Margrave (BDD-based), HSAT(SAT-based)
– Test suite containing real XACML policies

• Continue, Network, Fedora, GAAA, eXist
• Policies selected within expressiveness of HSAT 

and/or Margrave
2. Show approach is practical for expressive, 

real-world policy use cases 
– NASA HQ Data Access Use Case
– HL7 Health care policy
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Empirical Results

• Tested formal verification and policy 
comparison
– Simulated test cases based on policy attributes
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NASA Federated Data Access Use Case
• Collaboration with NASA HQ

– OWL is already being used at NASA (POPS, BIANCA)
– NASA interested in XACML+OWL for access control

• Data integration app BIANCA as an example
– Developed a set of access policies for BIANCA 
– Subjects and resources taken from the NASA Taxonomy 

• Resulting XACML policy
– 4 policy sets (3 departments and 1 general)

• Each department has 10-15 XACML policies
– RBAC with data-types and ontology extensions

*For details see: Michael Smith et al. Mother May I? OWL-Based Policy Management at NASA.  In 
Proc. Of the 3rd International Workshop on OWL: Experiences and Directions (OWLED), 2007.
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Empirical Results
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HL7 Healthcare Policy
• Health Level 7 Standard 

– Push towards open standards for electronic health records
– Access control crucial in this scenario

• Contains a set of RBAC permissions, constraints and 
scenarios
– 39 RBAC scenarios represent an instance of a health information 

system policy
• HL7 policy

– Hierarchical RBAC with constraints and data-types
– Vocabulary domains (role hierarchy in OWL)

• Converted to HL7 policy to XACML
– 107 Policy sets, 100+ attribute values
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Empirical Results
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• Tested on original policy and synthetic extensions 
(more)

• Results demonstrate performance practical for 
compile-time analysis 
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Conclusions & Future Work
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Contributions
• XACML Semantics and Complexity Results

– Complexity bounds and comparison of XACML to other 
logic-based languages

• Developed a static analyzer for XACML policies 
– Demonstrated analyzer is practical for large and 

expressive policy sets
• Showed framework is applicable to other domains

– Formalized and analyzed WS-Policy and WS-XACML
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Future Work
• Extend reachability analysis

– Find all minimal reachable sets of policies
• Policy repair service

– Develop techniques for ‘fixing’ policies
• E.g., find a minimal set of constraints to be added s.t. 

policy satisfies a set of test conditions

• Analyze more expressive policies
– Obligations and Dynamic Policies
– Business rules
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Questions

Thank You


