
IARPA APP Joint PI Meeting - 29 July, 2009

Policy Assurance for PIR Queries

Lalana Kagal
MIT CSAIL
Decentralized Information Group

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Overview

Introduction

Motivation and Problem Statement

Challenges

Technical Approach

Next steps

Summary

2

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Introduction

What does policy compliance mean ?

Proving that requests made by the client conform to policies

Usually for upfront authorization

Client

Policy Reasoner

Server/
DB

query / request

query / request
compliant with
my policy ?

Yes / No

permit / deny

3

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Introduction

What does policy assurance for PIR queries mean ?

Assuring that the client’s queries are compliant with previously negotiated
policies

Policy tools are part of trusted client base

Queries are logged so after the fact non-compliant queries can also be
identified

Trusted Base

Client

Policy Assurance
Components

Server/
DB

queries

compliant /
non-compliant

PIR protocol

queries

Query

Log

4

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Introduction

We view policy assurance and authorization as parts of a broader
goal: accountability

In several application contexts, strictly enforced, before-the-fact
authorization of every action is insufficient

Sometimes it is more appropriate to analyze actions after-the-fact
and hold policy violators accountable

Unexpected circumstances

No single action leads to a violation but a combination of
actions does

User is authorized to access resource/data but misuses it after
getting access

Accountability framework requirements

expressive policy language and reasoner

logging and provenance middleware

justification generation and interface

Image courtesy of Adventure Quest http://www.battleon.com/

5

http://www.battleon.com
http://www.battleon.com

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Motivation

Why do we need policy assurance for PIR queries ?

Queries and results are not revealed to the database administrator/owner

Possible that queries violate policy and leak information

Client can ensure that he/she meets the policies

before-the-fact and only send compliant queries to the PIR database

after-the-fact to understand the policies and learn to formulate
compliant queries in the future

6

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Example

Policy

The user may not query specifically for people living in New England

Compliant query

SELECT name and age FROM people WHERE zipcode="21244"

SELECT * FROM people WHERE last_name="Smith"

SELECT * FROM people WHERE birth_city="Cambridge"

Non-compliant query

SELECT openid and ssn FROM people where city=”Boston”

SELECT * FROM people WHERE State="MA"

7

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Problem Statement

What tools and techniques are required to prove that PIR queries are
compliant or non-compliant with policies

What do these policies look like ?

What are the policies based on ?

How can these policies be expressed ?

How can policy compliance/non-compliance be identified ?

Is just identifying non compliance sufficient ?

If not, how can the reason for compliance/non-compliance be
appropriately explained ?

8

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Challenges in Policy Assurance

Policy structure

dependent on query structure

SPARQL Query Language for RDF

similar to sql but for Semantic Web data

Image courtesy http://www.snee.com/bobdc.blog/

9

http://www.snee.com/bobdc.blog/2008/10/learning-more-about-sparql.html
http://www.snee.com/bobdc.blog/2008/10/learning-more-about-sparql.html

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Challenges in Policy Assurance

Policy Structure

Customizable by database

columns,values of the columns

range, domain, instance, or subclass of column or column value

Integrate data external to the current domain

Span query log/history

10

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Challenges in Policy Assurance

Policy language

Policies are based on different kinds of data and conditions

For example, “Access to marital status, gender, and religion for US
citizens is not permitted”

Need to understand and capture what it means to be a US citizen

Policies tend to deal in abstract terms and talk about kinds of information
that should not be accessible or should not be used for certain purposes

For example, “Access to contact information for minors is not
permitted”, or “my health information cannot be used to contact me
regarding experimental drugs”

Need to understand that contact information includes email, mailing
address, telephone num, fax num.

11

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Challenges in Policy Assurance

User Interfaces

Policy authoring

What input needs to be provided for automated policy generation ?

Justification UI

How to display meaningful portions of the justification ?

12

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Technical Approach

Policy Assurance Components

AIR Policy Language

AIR Reasoner

SPARQL Translator

Trusted Base

Client /
Trusted

party

Policy Assurance Components

Server/
DB

AIR Policy
Engine

Query
logger

SPARQL
translator

Policy
Editor

Justification
UI

db meta-data +
plain-text
SPARQ
queries

compliance +
justification

AIR policy
language

PIR Protocol

Query Logger

Policy Editor

Justification UI

13

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Technical Approach

Policy Assurance Components

AIR Policy Language

AIR Reasoner

SPARQL Translator

Query Logger

Policy Editor

Justification UI

14

Trusted Base

Client /
Trusted

party

Policy Assurance Components

Server/
DB

AIR Policy
Engine

Query
logger

SPARQL
translator

Policy
Editor

Justification
UI

db meta-data +
plain-text
SPARQ
queries

compliance +
justification

AIR policy
language

PIR Protocol

IARPA APP Joint PI Meeting - 29 July, 2009of 38

AIR Policy Language

a machine-understandable policy language

Semantic Web technologies for shared model of
queries and policies

Why Semantic Web ?

Need to ground terms on common models of data and
knowledge so that data can be exchanged and used
between different systems with some assurance of its
meaning

Semantic Web technologies offer some good advantages

shared model of discourse

global unique identifiers

open & dynamic

interoperability - mapping between concepts and
instances possible

Image courtesy of http://www.cartoonbank.com/

15

http://home.ca.inter.net/~dmonet/
http://home.ca.inter.net/~dmonet/

IARPA APP Joint PI Meeting - 29 July, 2009of 38

AIR Policy Language

AIR policies are written in Terse RDF Triple Language (Turtle)

Each AIR policy consists of one or more rules

policy = { rule }

A rule is made up of a pattern that when matched causes an action to be
fired. Optional: variable, description

rule = { pattern, action [variable description]}

An action can either be an assertion, which is a set of facts that are added
to the knowledge base or a nested rule

action = { [assert | assertion] | rule }

:MyFirstPolicy a air:Policy;
 air:rule [
 air:pattern { ... };
 air:assertion { ... };
 air:rule [...]
].

Third version of AIR to be released in Fall with simpler syntax

:MySecondPolicy a air:Policy;
 air:rule [
 air:if { ... };
 air:then { ... };
 air:else { ... }

16

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Policy Format

PIR policies written in terms of retrieving and filtering

Queries retrieve certain values

Example: The user may / may not retrieve attribute X

Queries use certain values as conditions or filters

Example: The user may filter based only on X or Y

AIR policies for PIR queries use properties from the SPARQL translation ontology

retrieve property deals with values that are output

clause property deals with filter conditions
:SSN_Rule1 a air:BeliefRule;
 air:label "SSN Retrieval Rule 1";
 air:if {
 :Q a s:SPARQLQuery;
 s:retrieve :VL;
 s:clause :C.
 :VL s:var :V1.
 :C s:triplePattern [log:includes { [] db:ssn :V1 }].
 };
 air:description (:Q " is a SPARQL Query and retrieves SSN values");
 air:then { air:assert {:Q air:compliant-with :SSN_Policy} }.

17

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Supporting Database Metadata

Database meta-data provided in Semantic Web format

Metadata not restricted to any structure or ontology

Example: Person a Class; with name, ssn, email, address, telephone as
properties. address has several properties - street, house number, state,
city, and zipcode, etc.

Abstract data support

Example policy: “Access to contact information of minors is not
permitted”

Example: “My health information cannot be used to contact me regarding
experimental drugs”

contact information and health information are not individual attributes
but a collection of several values or instances

18

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Supporting Database Metadata

Abstract policy support

Contact info and health info can be described in multiple ways

Grouping column names

Example: Contact details is a group containing email, address,
telephone, fax, office add

Ontological relationship between column names

Example 1: HealthInfo is a Class with currentSymptoms,
currentPrescriptions, pastPrescriptions properties

Example 2: HealthInfoData is a class and CurrentSymptoms,
CurrentPerscriptions etc are instances

19

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Integration with Semantic Web Data

AIR policy language allows referring to and
using any SW data

Example policy: The user may not query
specifically for people living in New
England

Input: SW data to allow reasoner to infer
meaning of New England

Input: SW data to allow reasoner to infer
lives-in is abstract data type that maps to
database attributes city, state, and zipcode

:NewEngland a :Region.
:MA a :State; :in :NewEngland.
:NY a :State.
:CT a :State.
:Boston a :City; :in :MA.
:Cambridge a :City; :in :MA.
:02139 a :zipcode; :in :Cambridge.
@forAll :A, :B, :C.
{ :A :in :B.
 :B :in :C
} => { :A :in :C }.

Simple rules defining NE region

db:LivesIn a rdf:List;
 rdf:first db:city;
 rdf:rest
 (db:state
 db:zipcode
).

Grouping of database meta-data

20

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Integration with Semantic Web Data

Authentication information can also be provided in SW format

Example: CSAIL members may not query specifically for people living in
New England

Along with providing SW data about what it means to be “living in” and
how “New England” can be inferred, authentication and/or user
credential information can also be provided

:ABC a s:Requester;
 foaf:openid <http://people.csail.mit.edu/lkagal/foaf#me>.

@forAll :U.
{ <http://csail.mit.edu/members.rdf>.log:semantics log:includes
 { :U foaf:openid <http://people.csail.mit.edu/lkagal/foaf#me> }
} => { :U db:group db:CSAIL }.

Inferring group membership of requester

21

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Integration with Semantic Web Data

Example policy: CSAIL group members may not query specifically for
people living in New England

:NE_Rule1 a air:BeliefRule;
 air:label "New England Rule 1";
 air:pattern {
 :Q a s:SPARQLQuery;
 s:retrieve :VL;
 s:clause :C;
 s:user :U.
 :U dg:group db:CSAIL.
 };
 air:description (:Q " is a SPARQLQuery and the requester belongs to CSAIL");
 air:rule :NE_Rule2.

:NE_Rule2 a air:BeliefRule;
 air:label "New England Rule 2";
 air:pattern {
 :VL s:var :V1.
 :C s:triplePattern [log:includes {[] :L :V1}].
 :L list:in db:LivesIn.
 };
 air:description (:Q " contains a lives-in attribute " :L);
 air:rule :NE_Rule3;
 air:alt [air:assert {:Q air:compliant-with :NE_NewPolicy}].

:NE_Rule3 a air:BeliefRule;
 air:label "New England Rule 3";
 air:pattern {
 :V1 db:in db:NewEngland
 };
 air:description ("The user is filtering on " :L " with value set to " :Y ", which is in New
England. The user belongs to CSAIL and may not query specifically for people living in
New England");
 air:assert {:Q air:non-compliant-with :NE_NewPolicy};
 air:alt[air:assert {:Q air:compliant-with :NE_NewPolicy}].

22

IARPA APP Joint PI Meeting - 29 July, 2009of 38

General Types of Policies

To enable thinking about and expressing policies, we’ve defined some broad
types of policies

Restriction / Black List

The user may not retrieve/filter X, Y or Z

Example policy:The user may not retrieve ssn, dob, or address

Conditional Restriction / Black List

The user may not retrieve/filter X, Y or Z if condition

Example policy:The user may not retrieve ssn, dob, or address if age < 18

Permit / White List

The user may only retrieve/filter X,Y and Z

Example policy: The user may only filter on first_name, last_name,
workplace, work add

23

IARPA APP Joint PI Meeting - 29 July, 2009of 38

General Types of Policies

Conditional White List / Permit

The user may retrieve/use X,Y and Z if (condition)

Example policy: The user may retrieve photos if age > 18

Inclusion

if you retrieve/filter A you should/should not retrieve/filter B

Example policy: The user may retrieve first_name, last_name if he does not
filter on ssn

24

IARPA APP Joint PI Meeting - 29 July, 2009of 38

AIR Reasoner

Production-rule system in python

Uses dependency tracking to generate justifications for compliant and non-
compliant queries

Part of justification generated by reasoner

25

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Justification User Interface

AIR reasoner generates proofs of compliance
and non-compliance

Proofs are not easy to understand

Graphical justification interface that provides
an explorable structured natural language
explanation for policy compliance and non-
compliance

Part of Tabulator, a Semantic Web browser

Available as a Firefox extension

26

Image courtesy http://clip.dia.fi.upm.es/~logalg/slides/

http://clip.dia.fi.upm.es/~logalg/slides/
http://clip.dia.fi.upm.es/~logalg/slides/

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Justification User Interface

27

IARPA APP Joint PI Meeting - 29 July, 2009of 38

SPARQL Translation

Why should we translate the query language ?

RDF-based tools - AIR reasoner and Justification UI

SPARQL is not in RDF

Example query: List of the age and openid URIs of all adults living in
Boston

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX db: <http//dig.csail.mit.edu/db#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?s ?id ?n WHERE {
 ?s db:city db:Boston.
 ?s db:age ?a.
 ?s foaf:openid ?id.
 FILTER (?a > 18)
}

Example SPARQL query

28

IARPA APP Joint PI Meeting - 29 July, 2009of 38

SPARQL Translation

SPARQL translation ver 1

Detailed SPARQL ontology in RDF

Captured SPARQL semantics

Lead to lengthy and complex policies
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix db: <http//dig.csail.mit.edu/db#> .
@prefix s: <http://dig.csail.mit.edu/2009/IARPA-PIR/sparql#> .
@prefix : <http://dig.csail.mit.edu/2009/IARPA-PIR/query1#> .

:Query-1 a s:SPARQLQuery;
 s:cardinality :ALL;
 s:POSList [
 s:variable :S;
 s:variable :ID;
 s:variable :N;
];
 s:WhereClause :WHERE.

 :WHERE a s:DefaultGraphPattern;
 s:TriplePattern { :S db:city db:Boston };
 s:TriplePattern { :S db:age :A };
 s:TriplePattern { :S foaf:openid :ID };
 s:Filter [
 a s:ComparatorExpression;
 s:TriplePattern { :A s:BooleanGT "18"^^xsd:integer }
].

Translation of SPARQL query

SPARQL Translation Ontology
Version 1

29

IARPA APP Joint PI Meeting - 29 July, 2009of 38

SPARQL Translation

SPARQL translation ver 2

Simple, high level ontology in RDF

Does not capture SPARQL semantics

Lead to smaller, easier to specify policies

@prefix s: <http://dig.csail.mit.edu/2009/IARPA-PIR/sparql#> .

:Query-1996945348 a s:Query;
 s:VarList [
 s:variable :s;
 s:variable :id;
 s:variable :n;
];
s:Clause [
 s:TriplePattern { :s <http//dig.csail.mit.edu/db#city> <http//dig.csail.mit.edu/db#Boston> };
 s:TriplePattern { :s <http://xmlns.com/foaf/0.1/age> :a };
 s:TriplePattern { :s <http://xmlns.com/foaf/0.1/openid> :id };
 s:TriplePattern { :a s:BooleanGT "18 "};

].

Translation of SPARQL query

SPARQL Translation Ontology
Version 2

30

IARPA APP Joint PI Meeting - 29 July, 2009of 38

SPARQL Translator

Converts SPARQL into RDF using Translation Ontology Version 2

Available as a Web service

31

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Policy Authoring

32

Python back-end

Web front-end

Process

Select type of policy

Specify retrieve or filter

Specify col names/
abstract names and
values

Mockup of Policy Authoring Tool

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Next Steps

33

Trusted Base

Client /
Trusted

party

Policy Assurance Components

Server/
DB

AIR Policy
Engine

Query
logger

SPARQL
translator

Policy
Editor

Justification
UI

db meta-data +
plain-text
SPARQ
queries

compliance +
justification

AIR policy
language

PIR Protocol

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Next Steps

User Interface

Python back-end to be completed

Policy authoring Web form to be completed

Add log based policy generation support to policy authoring UI

Import ontologies in UI to define policies

Provide persistent log for queries

Support history/log based reasoning

34

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Next Steps

Policy language

default policies - compliant unless proved non-compliant or vice versa

conflict resolution

Wrapper script to accept queries and send them to reasoner and return
results

Convert sets of queries and policies prepared by the test and evaluation
team into SPARQL queries and AIR policies

Policy Assurance metric

where,
N is total number of queries
Ncorrect is the number of queries correctly classified
Nfp is the number of queries incorrectly classified as violating policy
Nfn is the number of queries incorrectly classified as conforming to policy

35

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Summary - Research & Contributions

Framework

Helps users conform to policies or learn how to form compliant queries

Policy language

extended to support PIR queries

support for database meta-data

abstract data types for high level policies

integration with external SW data

Policy UI

encourages policy administrators to think clearly about their policies and
express them explicitly

justification UI helps debug policies and queries

36

IARPA APP Joint PI Meeting - 29 July, 2009of 38

Accountability Projects at DIG

This project is part of larger effort at DIG aimed at policy-awareness &
accountability

Some other accountability projects include

Policy-aware mash-ups

Fusion Center project

Social Web Privacy or Respect My Privacy

License validator & Semantic Clipboard

37

IARPA APP Joint PI Meeting - 29 July, 2009of 38

References

Policy Assurance for PIR Queries, http://dig.csail.mit.edu/2009/IARPA-PIR/

TAMI project, http://dig.csail.mit.edu/TAMI

Tabulator extension, http://dig.csail.mit.edu/2007/tab/

AIR specifications, http://dig.csail.mit.edu/TAMI/2008/12/AIR

Paper on AIR, http://dig.csail.mit.edu/2008/Papers/IEEEPolicy

38

http://dig.csail.mit.edu/2009/IARPA-PIR/
http://dig.csail.mit.edu/2009/IARPA-PIR/
http://dig.csail.mit.edu/TAMI
http://dig.csail.mit.edu/TAMI
http://dig.csail.mit.edu/2007/tab/
http://dig.csail.mit.edu/2007/tab/
http://dig.csail.mit.edu/TAMI/2008/12/AIR
http://dig.csail.mit.edu/TAMI/2008/12/AIR
http://dig.csail.mit.edu/2008/Papers/IEEEPolicy
http://dig.csail.mit.edu/2008/Papers/IEEEPolicy

