The Design and Implementation of Erachnid: an

Extensible, Scalable Web Crawler in Erlang

David Sheets (dsheets@mit.edu)
6.UAP
Lalana Kagal

May 22, 2009

1 Introduction

With the explosive growth of the World Wide Web in the last 15 years, the task of processing
and analyzing Web-scale resources has become much more complex. As of March 5, 2009, the
most popular Web search engine, Google, has indexed approximately 17 billion active web
resources. Fortunately, web-scale processing, storage, and bandwidth resources have become
available in the form of “cloud computing” such as Amazon’s Elastic Compute Cloud (EC2).
Because these resources are able to be provisioned dynamically, smaller players can pay for
only what they need, when they need it. To take full advantage of this capability, however,
software must be designed with Web-scalability in mind. To accomodate niche use cases
that are now possible with cloud resources, this Web-scalable software must be extensible.
This research project produced a web crawler, Erachnid, that can easily be scaled up or

down and run on any combination of cloud and local resources. Additionally, the design of



Erachnid is sufficiently modular so that it can be adapted to a variety of uses in production

and research environments.

2 Crawling Challenges

2.1 Overfetching/Refetching

To prevent the accidental duplicate fetching of a resource, a fast resource status look-up
service is required. Many resources and clusters of resources contain multiple identical URLs.
A naive crawler would request a resource for every URL it extracts. This results in increased
bandwidth cost. Additionally, overfetching incurs an opportunity cost as newly discovered
content stays unfetched while already fetched content is reacquired.

Refetching content in a timely manner is important if the consumers of the crawler’s data
need up-to-date information. Search engine indexes, web site monitoring systems, and event
tracking systems all require fresh information. To schedule refetches, crawlers can either
fetch the least recently fetched (naive) or adjust refetch frequency according to the change
velocity and perceived value of content. The refetch algorithm is typically highly dependent

on the nature of the crawl. The Erachnid prototype does not contain a refetch algorithm.

2.2 Request Throttling

As a web crawler consumes more aggregate bandwidth in its operation, it becomes increas-
ingly important that its request frequency is reasonable. With no request throttling, a
distributed web crawler pointed at a single site is essentially a denial of service attack. The
greater the request throughput capability of the crawler, the more easily the crawler can
take sites offline through careless requests. To be a respectful web bot, all crawlers must

take steps to limit the maximum number of requests issued to a single site in a given period



of time.

2.3 Dynamic Content

As the Web evolves, HTTP, the Web’s network protocol, is increasingly used to request
programmatically generated content instead of simple static resources. For crawlers, this
dynamic content can be difficult to handle because of its variable URL structure. Many
dynamic resources link to other dynamic resources of the same type. If a crawler uses only
simple URL canonicalization, it may generate an exponential number of resources to be

crawled when faced with a simple web application.

2.4 Prioritizing Downloads

Crawler bandwidth is a limited resource and the Web is constantly expanding and changing.
To make the most of a crawler’s bandwidth, prioritization of resource requests is required.
In many cases, this prioritization algorithm is specific to the crawl application and a highly

tuned algorithm is typically complex.

3 Crawler Design

To meet the challenges of the modern Web crawler, Erachnid was implemented in Erlang for

its lightweight processes and rich networking libraries.

3.1 Erlang

Developed in 1986 at Ericsson, Erlang is a functional programming language and runtime
system designed to support distributed, fault-tolerant, soft-real-time, non-stop applications

such as telecommunications switches. At a low level, the language supports concurrency



via the Actor model. Processes and asynchronous message passing are primitives in Erlang.
These features make Erlang an ideal language for construction of a Web-scale crawling
system.

Unfortunately, Erlang has a number of shortcomings. For example, Erlang code may
be difficult for a procedural or imperative programmer to understand because of its shared-
nothing semantics. Therefore, to gain the power of Erlang’s runtime system and process
primitives while maintaining ease of extensibility, Erlang may be used as the “glue” of the
web crawler and simple interfaces were designed for extensibility. C, Python, Ruby, and the

JVM all have libraries for the creation of Erlang nodes.

3.2 System Layout

Erachnid consists of three primary components: the queue server, the fetcher, and the ex-

tractor. Any number of queue servers and fetchers may be started manually or via plugin.

3.3 Queue Server

Each queue server maintains a queue of pending resource request queues. Each resource
request queue corresponds to a single domain name and there exists only a single resource
request queue anywhere in the system for a given domain. Additionally, these pending
request queues are tagged with timestamps to provide request throttling. As fetchers request
resources to retrieve, values are popped off of request queues in least recently retrieved order.
If a request queue for a domain empties, the queue server will spawn extractors to process
fetched but unextracted resources from the database. If all resource request queues have
been accessed more recently than the throttle timeout, new and updated queues are merged

in from a dictionary that collects resource requests pushed from extractors.



3
I
0}
o
c
=
>

mit.edu mit.edu/B mit.edu/C

Q
o
o
Q
o
(a)
o
3
2
>

google.com google.com/B google.com/C

<28
Q
(2]
>
o
o
Ing
o
-
Q
~
>

slashdot.org slashdot.org/B slashdot.org/C

Figure 1: A simplified representation of the queue server’s data structure. Here, the mit.edu
queue is at the head of the domain queue and the head of the mit.edu queue, mit.edu/A, will
be popped first when a request is made to the queue server. After mit.edu/A is popped, the
mit.edu queue will move to the back of the domain queue and google.com/A will be popped
next. Only the dashed elements may be popped simultaneously in this system due to the
throttling policy.

fetcher fetcher fetcher
queue_server queue_server queue_server

extractor

l ? extractor ’ l extractor l

mnesia table
fragment

mnesia table
fragment

mnesia table
fragment

Figure 2: A 3-node crawl system with fragmented Mnesia tables.



3.4 Fetcher

The fetcher drives the crawl system. At frequent intervals, the fetcher requests new resources
to fetch from a queue server. The fetcher attempts to maintain a constant number of pending
network requests. Manual or automatic adjustment of this number is necessary to maximize
bandwidth utilization. As network requests return, the fetcher loads the resources into the

store and notifies the relevant queue servers.

3.5 Extractor

Whereas the fetch system is driven by a timer and response pump, the extraction system is
subordinate to the queue server (and thus the fetchers). When a queue server begins to run
out of valid response requests to dispatch, it spawns extractor processes. These processes
take a list of domains that are in demand, query the database for resources belonging to those
domains, and scan through the binary resource data looking for URLs. After the extractor
has processed a few resources for each requested domain, it builds resource records, inserts

them into the database, and notifies the relevant queue servers.

3.6 The Store

To manage crawl state, Erlang/OTP’s Mnesia distributed database was employed. Mnesia
supports table fragmentation, online data migration, and ACID transactions, making it very
well suited for the large persistent storage system backing a web crawler.

The database schema used by the crawl system is very simple with only two tables.
The ‘resource’ table (Table 1) describes web resources the crawler will retrieve, is currently
processing, or has retrieved. A ‘resource_flags’ record in the resource table indicates the

resource’s status using a set of booleans.



Field Type
Domain String
URL String
Flags ResourceFlags
Depth Integer
Body Binary

Table 1: The ‘resource’ table in Mnesia

Field Type
Domain String
Server | GloballD

Table 2: The ‘queue’ table in Mnesia

Because Mnesia stores arbitrary Erlang terms and does not require schema definition,
the ‘resource’ table can be extended by any plugin without breaking compatibility with core
systems.

The other table in the crawler’s database is the ‘queue’ table which maintains a mapping
from resource hostname (domain name) to queue server (Table 2). This table is used to
coordinate queue servers and fetchers so every domain has a unique queue server in charge

of it.

4 Scalability

Because of Erachnid’s separation of concerns, it should be very scalable. Due to time and
resource constraints, scalability tests were only performed on one, two, and three multicore
machines. All machines were running 64-bit Ubuntu Linux 8.10 between 2 and 2.4 GHz. On
all machines, average CPU utilization remained below 60% during testing. Each machine
was connected to MIT’s network via 100 Mbps ethernet. Request speeds were measured by
averaging retrieved page counts over three consecutive 10 second intervals. Undistributed,

Erachnid averages 78.3 resource retrievals/sec. Distributed, Erachnid scales with m = 0.94



Retrieval Speed vs. Node Count

Retrievals/sec
150 200 250
1 1 ]

100
|

50
|

Nodes

Figure 3: Adding more nodes yields a near-linear speedup (m=0.94)

on average. Crawlers were seeded with the URLs in Appendix B.

In this limited configuation, however, testing did yield near linear (m=0.94) speed-up
(Fig. 3). Unfortunately, to make conclusive statements about the performance of this design,
future testing of the system on more local and remote nodes is required. The author is
confident, however, that similar speed-ups should be achievable within at least an order of

magnitude of nodes.

5 Extensibility

Erachnid was designed to be modular and to easily allow future users to customize it. To
this end, the API (Appendix A) for each crawler component was kept simple and abstract.

Unfortunately, no plugin components were developed as part of this crawler design prototype.



6 Limitations

Erachnid is currently prototype-quality code and contains a number of bugs. Profiling has
not been done on the system so request speeds are not indicative of what would be achievable
in a production scenario. Erachnid does not contain many of the features of a generic crawler
such as refetch policy, sophisticated URL canonicalization, or load balancing. If Erachnid
were to be developed further, these features would be implemented as plugins on top of

Erachnid’s basic design.

7 Conclusion

Erlang’s shared-nothing concurrency and lightweight threads are very well suited to devel-
oping Web crawling systems. The Mnesia distributed relational database system provides
a solid and adequately performant storage solution for crawl tasks. With a focused and
extended development effort, a crawl system written in Erlang with a similar design could
easily become the standard tool a researcher uses when he or she needs to analyze large

amounts of Web data.



A API

Component Function
pop(count)

Queue Server | push(domain, [resource])
split(count)

Fotcher fetch(resource)
complete(count)

Extractor extract(|domain])

Table 3: The API for the major crawler components

B Seed URLs

http://news.google.com/
http://web.mit.edu/dsheets/www/
http://en.wikipedia.org/

Table 4: Seed URLSs used for benchmark

C Distribution

A copy of the current Erachnid source code is available at:
http://web.mit.edu/dsheets/Public/erachnid.tar.gz
No warranty is made or implied for this code — use at your own risk.

To run the code, an Erlang/OTP distribution newer than R12B is required. crawler.erl
contains simple set-up functions for debugging. crawler:seed can be used to start a basic,
single node crawl. To run on multiple nodes, the nodes must use Erlang name services, reg-
ister with each other, and share secret cookies. Information about configuring and installing
fragmented Mnesia tables can be found at:

http://www.trapexit.org/Mnesia_Table_Fragmentation

10



