
Query-Based Database Policy Assurance Using

Semantic Web Technologies

by

José Hiram Soltren

S.B., Massachusetts Institute of Technology (2007)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2009

c© Massachusetts Institute of Technology 2009. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 21, 2009

Certified by. .
Lalana Kagal

Research Scientist
Thesis Supervisor

Accepted by .
Dr. Christopher J. Terman

Chairman, Department Committee on Graduate Theses

2

Query-Based Database Policy Assurance Using Semantic

Web Technologies

by

José Hiram Soltren

Submitted to the Department of Electrical Engineering and Computer Science
on August 21, 2009, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis, we present a novel approach to database security which looks at queries
instead of the database tables themselves. In doing so, we use a number of Semantic
Web technologies to define rules, translate queries, and make assertions about com-
pliance with existing policies. We can ascertain compliance without looking at the
contents of the database. Our system can function as a drop-in addition to an existing
database system, adding additional functionality in a robust manner. The policies
are written in the AIR language, and the reasoners and wrapper scripts in C++ and
Python. We discuss the design and implementation of this system in detail.

Thesis Supervisor: Lalana Kagal
Title: Research Scientist

3

4

Acknowledgments

Prior to beginning work on this thesis, Semantic Web technologies were entirely new

to me. Learning all of the technologies has been a fun and enlightening journey.

My thanks go to everyone who helped to make this work possible. Lalana Kagal

played an instrumental role as my advisor, a sounding board for many ideas and a

source of much help. The other graduate students here in DIG, especially Oshani

Seneviratne, Ian Jacobi, and Jim Hollenbach, provided much useful feedback from

the very beginning. I am equally indebted to our summer UROP interns, especially

Yotam Aron, for providing much needed help with this project and helping to keep a

fresh perspective.

I am also indebted to Prof. Hal Abelson and Danny Weitzner. Their undergrad-

uate course, Ethics and Law on the Electronic Frontier (6.805), was my introduction

to the world of policy in the digital domain.

Everyone who read my thesis and provided valuable feedback merits special recog-

nition. Lalana Kagal and Hal Abelson, as well as Ray Li, K. Krasnow Waterman and

Joe Pato, have, between all of them, well over a century of experience in Web, soft-

ware, legal, and security systems. My thanks to them for making this thesis cohesive.

Finally, I thank my girlfriend, Jane, for her patience and understanding as this

thesis approached completion, and my mother, Diana, who supported my decision to

come to MIT from the very beginning.

This work was supported by an IARPA Award, #FA8750-07-2-0031.

5

6

Contents

1 Introduction 15

1.1 Motivating Example . 17

1.1.1 Sample Usage Scenario . 17

1.2 System Components . 18

1.3 Outline . 19

2 Policy Assurance 21

2.1 Introduction to Policy Assurance . 21

2.2 User Roles and Perspectives . 23

2.2.1 The Administrator . 23

2.2.2 The User . 24

2.2.3 The Auditor . 24

2.3 Modes of Operation . 25

2.4 Demonstration . 25

2.4.1 Describing a Free-Text Policy 25

2.4.2 Checking a Compliant Query 26

2.4.3 Checking an Incompliant Query 31

2.4.4 Demo Notes . 37

2.5 Summary . 37

3 System Detail 39

3.1 SPARQL Query Translation . 39

3.1.1 SPARQL to N3 Web Page . 41

7

3.1.2 Query Conversion Ontology 41

3.1.3 swobjects: Parsing and Serializing 43

3.1.4 SPARQL Language Translation 43

3.1.5 Lost in Translation . 52

3.1.6 Translator Summary . 54

3.2 AIR Policy Generation . 54

3.2.1 Templates for Policy Generation 54

3.2.2 Supported Policy Types . 54

3.2.3 Automatic Policy Generation 63

3.2.4 Query History with check-compliance 67

3.2.5 Policy Generation User Interface 68

3.2.6 Compliance Testing and Browser Presentation in Tabulator . . 68

3.2.7 Implementation Note . 68

3.3 Summary . 72

4 Performance 73

5 Related and Prior Work 77

5.1 Policy Awareness . 77

5.2 Methodologies of Access Control . 78

5.2.1 Mandatory and Discretionary Access Control 78

5.2.2 Role Based Access Control . 79

5.2.3 Rule- and Policy-Based Access Control 80

5.3 Prior Work in Relational Databases 80

5.3.1 Access Control Lists . 80

5.3.2 Access Control Features In A Modern RDBMS 81

5.3.3 Misuse and Intrusion Detection 82

5.4 Alteration of Data . 83

6 Future Directions 85

6.1 SPARQL Endpoint Integration . 85

8

6.2 SQL Support . 86

6.3 Completing and Porting the N3 Translator 86

6.4 Policy Generation from Natural Language 87

6.5 Semantic Policies . 87

6.6 Database Description . 87

7 Concluding Thoughts 89

A Background Technologies 91

A.1 Semantic Web Overview . 91

A.1.1 The Vision . 91

A.1.2 The URI . 93

A.1.3 HTML, the HyperText Markup Language, and XML, the eX-

tensible Markup Language . 94

A.2 RDF . 95

A.2.1 Notation 3 . 97

A.3 OWL . 97

A.4 Tabulator . 98

A.5 SPARQL . 98

A.6 Reasoning . 100

A.6.1 Forward Chaining . 100

A.6.2 Production Rule Systems . 101

A.6.3 The Rete Algorithm . 101

A.6.4 Semantic Web Application Platform 101

A.6.5 cwm and cwmrete . 101

A.7 AIR . 102

A.7.1 Introduction . 102

A.7.2 A Brief AIR Tutorial . 103

A.7.3 Changes to the AIR language 106

A.7.4 AIR Summary . 108

A.8 Summary . 108

9

B Supporting Code 109

B.1 MIT Prox Card Policy . 109

B.2 SSN Policy - Original Ontology . 110

B.3 SSN Policy - Current Ontology . 115

B.4 A sample SPARQL Query . 117

B.5 Abstract SPARQL to N3 Ontology 117

B.6 Sample Restriction Policy . 119

B.7 Sample Inclusion Policy . 121

B.8 Sample Exclusion Policy . 124

B.9 Sample History-Aware Exclusion Policy 125

B.10 Sample Chaining Policy . 127

B.11 Sample Default Deny Policy . 129

B.12 No-Address Restriction Policy for Sample Scenario 130

10

List of Figures

1-1 Architecture of our policy assurance reasoner, demonstrating separa-

tion from the RDBMS. 19

2-1 Overview of an integrated policy assurance system. From [1]. 23

2-2 Restriction Policy Creator Web Page 27

2-3 Tabulator Representation of the Sample “No Address” Restriction Policy 28

2-4 URI for the demo “no address” policy. 28

2-5 Converting a SPARQL Query to N3 29

2-6 Compliant SPARQL query, converted to N3. 30

2-7 Tabulator Representation of a Sample SPARQL Query 30

2-8 URI for the translation of the compliant demo query. 31

2-9 Policy Execute Web Page . 32

2-10 Tabulator Compliance Summary for Sample Query and Sample Policy 33

2-11 Tabulator Compliance Justification UI for Sample Query and Sample

Policy . 34

2-12 Tabulator Non-Compliance Summary for Sample Query and Sample

Policy . 35

2-13 Tabulator Non-Compliance Justification UI for Sample Query and Sam-

ple Policy . 36

2-14 URI for the translation of the non-compliant demo query. 36

3-1 A screenshot of the SPARQL to N3 translator Web page. 40

3-2 Ontology diagram of the SPARQL translation, courtesy of Yotam Aron. 42

3-3 A screenshot of the policy generator, courtest of Yotam Aron. 69

11

3-4 Tabulator browser presentation of the MIT Prox Card policy. 70

3-5 Tabulator justification user interface. 71

4-1 Unoptimized policy run time from table 4.1. 75

4-2 Unoptimized policy run time from table 4.2. Note log scale on the X

axis. 76

A-1 Semantic Web “layer cake,” showing how components relate [2]. . . . 92

A-2 The RDF logo. Its structure suggests the triple pattern. From [3]. . . 95

A-3 A sample RDF data set, using backslash to denote newline. From [4]. 99

A-4 A sample SPARQL query. From [4]. 99

A-5 Diagram of the AIR policy language ontology. 103

12

List of Tables

3.1 Query conversion ontology. 41

3.2 Conversion of Boolean operators. The “name” refers to the title of

the operator in the translator code. The “translation” is what the

translator outputs, in the query translation namespace. 50

3.3 Automatic policy generation: USE. 65

3.4 Automatic policy generation: RETRIEVE. 66

4.1 Running time, in seconds, of unoptimized queries. 74

4.2 Running time, in seconds, of optimized queries. 75

A.1 Expressing natural language as triples. 95

A.2 Expressing natural language as triples. 96

A.3 The output of a basic SPARQL query. 99

13

14

Chapter 1

Introduction

Databases are a common way of storing data, and SQL is arguably the most popular

variety of database in production as of this writing. The most popular SQL databases

implementations, Oracle and MySQL, offer a rudimentary set of security options.

SQL has a table-centric view of data, and a UNIX-like security model. [5] A database

super-user can create individual tables, create user accounts, and grant or deny access

to certain tables to certain users.

The existing state of the art in database security is administrator-centric and

based on security models that are decades old. While adequate for many applications,

these systems have limitations. They provide an “all or nothing” model of security,

with no ability to show which rules provided an output or a specialized, data centric

policy system. More information about the conclusions that a policy system reached

is helpful. It promotes transparency, helps find errors, helps keep users honest, and

helps to promote more fine-grained access policies. I expand on these systems with

the use of Semantic Web technologies. In particular, I offer policy assurance, which

provides a guarantee that a database query was or was not in compliance with a

policy. Policy assurance provides an exact description of why a query is or is not

compliant.

To securely grant access to a piece of information, data security engineers typically

ask the following questions, or make assumptions as necessary:

15

• Who are you?

• What information are you trying to see?

• Why do you want to see this information?

Electronic systems traditionally utilize a few common design patterns in their

implementations of security primitives. Discretionary access control [6] is the most

familiar approach, and the basis of the UNIX security model. A user or super-user

can expressly allow or deny other users certain permissions to certain pieces of data.

Mandatory access control [7] requires explicit permission for any action, granted by

an outside body; for a time, this was a popular design pattern for government systems

containing classified data. Role-based access control [8] groups users into specific roles,

which themselves have specific permissions. Rule based access control [9] allows an

administrator to create more specific policies for governing access.

This thesis documents a database security system built using Semantic Web tech-

nologies and design principles. I argue that a query to a database contains a substan-

tial amount of information about what a user is trying to access, and why they wish

to do so. I design and implement a system that implements rudimentary database

security, and provides explanations for the policies it enforces. Our model user is

“honest but curious”: a trusted, well-intentioned employee of a government agency

who is using a database, provided under numerous policies and agreements, to the

user’s agency.

The thesis introduces some key contributions to the field. The SPARQL to N3

conversion tool and related ontology are novel. The definitions of template policies,

and tools for creating them, reduce policy based security to a few primitives. Policy

assurance provides more transparency to users and administrators alike.

I approached this project in two phases. In phase one, I used SWObjects to

convert SPARQL queries to an RDF serialization. I wrote low level AIR policies to

check the compliance of these SPARQL queries, and demonstrated some test cases.

In phase two, I created an abstraction for these SPARQL queries, and provided a

meta level that removed dependence on the data structure.

16

1.1 Motivating Example

“Policy Assurance” is a set of technical mechanisms that enable effective

and accountable information sharing and usage. [10]

“Policy assurance” is a process by which we can be anywhere from reasonably to

absolutely certain that actions in a system are in compliance with an existing policy.

To validate the claim of compliance (or noncompliance), there is some data set which

validates the claim.

As a sample scenario, we consider a database that contains highly sensitive data

and, as a result, is only accessible to a limited number of people. For this possible

database, we assume that the database administrator is not the database owner,

and thus, cannot see either the contents of the database or the queries that external

parties make to the database. The database owner may only see the information in

the database, but not the queries made to it. Policy assurance allows the database

owner and database administrator to verify that every query made to the database

was in compliance with the given policies, without exposing any sensitive information.

The key point of policy assurance is that, if an external party knows the policies

and has access to enough information about each policy check, the external party can

verify the compliance of the policies. If there is a guarantee that every single access

is logged, then an external party can validate a claim of complete compliance. This

promotes transparency, by allowing verification, while providing security, which we

might define as “minimize the information required to permit verification.”

1.1.1 Sample Usage Scenario

In this thesis, we will consider a simple usage scenario of an administrator who wishes

to guard data in an RDF data set which users access using SPARQL queries. In this

scenario, users may not access location information about entities in the datbase;

specifically, they may not retrieve or use address information in any form. The

administrator may not see the queries that users are making, for security reasons,

17

but must be certain that every single query made to the data set is compliant with

the policy about addresses.

The system described in this thesis is well suited to this task. In later sections,

we will describe how the administrator would create a policy to enforce this, and how

the administrator would check some sample queries manually. We will then describe

how this system could be configured to perform this task automatically, providing

policy assurance for the administrator and security for the users.

1.2 System Components

In this thesis, I present a system that provides policy assurance for SPARQL databases

by checking whether incoming queries conform to authorization policies written in

AIR. The system uses query based security to draw its conclusions. This system has

several components:

• A translator, which generates an N3 output from a SPARQL query. This output

serves as an input to a reasoner.

• An ontology which serves to define the N3 output of the translator.

• A number of pre-defined policy templates in AIR, which capture the behavior

of some of the most common policy design patterns. Some policies support

reasoning over a log of previous queries.

• An algorithm for automatically generating AIR policies by combining user in-

puts with policy templates.

• A Web interface for performing SPARQL to N3 translation.

• A Web interface for generating policies.

• A Web interface for checking queries against policies.

All of the Web interfaces in this thesis work with Tabulator’s Justification UI, for

user-friendly viewing of queries and policies.

18

Database
Tables

Transaction
Logs

Data Server

Policy Assurance
Reasoner

AIR Policies

External User

query

result

data

query

data

query

query result

Query History

policy

translated query

policy

(from Administrator)

Figure 1-1: Architecture of our policy assurance reasoner, demonstrating separation
from the RDBMS.

1.3 Outline

The remainder of this thesis is structured as follows. The following chapter provides a

demonstration of the system, elaborates on the topic of policy assurance, and provides

an overview of how this system is useful in implementing policy assurance. Following

the overview, I discuss the design and implementation of each component of the

system in detail, with a discussion of the design assumptions and trade-offs necessary

for implementation. Then, I explore the performance of the reasoner. I then look at

future directions for this work, and draw comparisons with other work in the field,

before coming to a conclusion.

The appendix chapters provide background information. I discuss the ongoing

Semantic Web initiative and the technologies which provide the infrastructure for

this work. I offer code samples and useful information about the project code.

19

20

Chapter 2

Policy Assurance

2.1 Introduction to Policy Assurance

In a broad sense, policies exist in almost any situation where multiple agents are in

contention for a shared resource. If these agents were in cooperation, or if there were

sufficient resources, there would be no contention, and thus, no need for a policy

system. The policies give a system a basis for mitigating contention.

Policies manifest themselves in multiple forms: as laws and customs in a human

world; as permissions and restrictions in a digital world; as habits in nature. Policy

seeks to identify particular actions, perhaps evaluated in a particular context, and

make a decision of some sort as a result of those actions. Policies exist for a number

of reasons. They may protect a shared resource from overuse or from simultaneous

users, which may damage the resource. They may regulate or restrict access to

certain kinds of resources, as access may cause side effects within a system. Policies

themselves often have justifications, to explain their existence.

In the everyday world, rules may exist for our own protection, or the protection

of others. As an example, I consider the public road system. There are a large

number of policies which concern the use of public roads, for any purpose, by any

individual. The existence of the policies is something of a fair trade bargain: without

the policies, the road system would deteriorate to the point of being useless; without

a road system, many other activities (such as trade, visiting others, providing medical

21

care, obtaining food, etc.) would become exceedingly difficult. The policies may not

be ideal, but are a superior option to the complete absence of the system.

A well-known policy states that “all users of motorized vehicles on public roads

must be certified.” In common terms, I know this as all drivers must have a license.

This is a simple, if expensive, policy to enforce: an agent (usually a police officer) may

check for compliance of this policy by asking someone operating a motorized vehicle

to present their license for inspection. This policy is expensive to enforce because

the means for doing so involve either having a police officer check everyone’s license

(which is not feasible), or requiring a license in order to enable a vehicle’s operation

(which may also be infeasible). As a result, there is some non-zero probability that

there are unlicensed drivers on the road.

In this case, complete policy assurance is exceedingly difficult. Every time an

officer checks a driver’s license, there is a record which includes the date and time

of the check, the officer’s identity, the identity of the driver and the vehicle, and

information about the driver’s license. This provides policy assurance for a single

incident, but complete assurance is not feasible. In practice, the choice to check

every single action versus some probabilistic number of interactions is itself a policy

decision, hopefully the result of a rigorous risk or cost-benefit analysis.

In a digital world, the marginal cost of explicit checks and storing lots of data

are far lower, and in many situations, effectively negligible or even zero. Thus, it is

easily possible to perform a rigorous check of every action against policies. As an

example, consider a Web site with a policy that states, “all users of the advanced

features of this Web site must have a valid account.” Regardless of the definitions of

user, feature, valid, and account that a Web site may choose, it is straightforward to

perform a check every time a user tries to access an advanced feature. The Web site

may maintain a log of successful and unsuccessful attempts to use advanced features.

We believe that the AIR language, reasoner, and Semantic Web approach is a good

fit for the problem of securing a database with sensitive data [1]. The policies we write

only need to look at the queries that a user makes. In the case of most policies, we

only need to look at a single query to determine compliance. The reasoner looks at

22

Figure 2-1: Overview of an integrated policy assurance system. From [1].

a user’s query, and an administrator’s policy, compares the two, and finds code in

the query that matches some template in the policy. The reasoner output provides

positive, verified confirmation that a query is or is not in compliance with a policy,

while only divulging enough information from the query to back up the compliance

claim. The policy assurance approach fulfills the need for positive confirmation and

traceability of query compliance using the minimal amount of data. Indeed, if the

very contents or results of the query are confidential, we must tread carefully.

2.2 User Roles and Perspectives

The system we present herein has multiple usage scenarios, to help end users imple-

ment this system and integrate it into existing databases.

2.2.1 The Administrator

A database administrator, or DBA, would be the first user to interact with the system.

The DBA is the entity responsible for maintaining a data set, and thus, for creating

policies that regulate access to the data set. It is possible that the DBA does not

have access to the queries that a user will make, and it is also possible that the DBA

only has access to a data set’s metadata.

In order to create a policy, a DBA must have a list of the fields in a database, and

23

in particular, the data types of those fields as URIs. Our implementation of policies

at present is largely dependent on finding a query that binds to a particular data

type. I are working on a tool that helps to automate this process by determining

what types are used in a data set, though this is moot if the DBA cannot access the

data set proper.

It is up to the DBA to determine what kinds of policies they wish to implement.

The DBA may be bound by local and national laws, by department practices, or by

any number of other factors in creating policies. In all likelihood, the policies that

the DBA needs to implement will be expressible in terms of the primitives that I

define in the next chapter. The DBA would then use the Web based tool to create

policies using our templates, and possibly check for compliance using some sample

queries the same way a user would. Some policies can be “history aware”, meaning

that the policy looks at all of a user’s past queries in addition to the current query

when making a compliance decision.

2.2.2 The User

The second major user of this system is someone who wishes to access the database.

There are two possible modes of operation here. If the DBA or a system administrator

has configured the policy assurance system as a SPARQL add-in, it is possible that the

user will see no change, other than having some queries rejected for lack of compliance.

HoIver, if the DBA chooses to implement the Web-based option, the user would be

able to see the compliance output of their query in a Tabulator-equipped Web browser.

The reasoner’s output would be helpful in aiding the “honest but curious” user to

make compliant queries to the database.

2.2.3 The Auditor

The third user of the policy assurance system is the auditor. This is a person or entity

charged with the responsibility of assuring that the policies that the DBA wrote are

correct, and that the system achieves compliance. The auditor would be able to access

24

the query history, the policies, and the reasoner outputs, and manually verify that

things are working correctly. An important future work of this project is to provide

tools that help the auditor perform query analysis.

2.3 Modes of Operation

As implemented in this thesis, the policy assurance system exists entirely outside

of any database implementation. It would allow analysis of a query history by a

user or administrator, and allow a user or administrator to check new queries for

compliance before sending them to the database. With no further modification, this

system could work, slowly but effectively, in a hypothetical “air gap” environment

where a user sends a query to an administrator for manual verification and entry. An

important future work is to integrate this completely with a SPARQL endpoint; we

describe the work needed here in the Future Work section.

2.4 Demonstration

In this section, we demonstrate the workflow for an administrator who wishes to

create a policy and use it to check queries for compliance using the Firefox Web

browser with the Tabulator browser plugin. This section expands on the sample use

scenario presented in the introduction. The workflow for all policy types is similar.

2.4.1 Describing a Free-Text Policy

The administrator wants to encode a policy that says, “users may not find out where

members of the database live. In the case of my data set, this means that users may

not see any data of the type ex:address. Users may not USE or RETRIEVE such

data.”

The first thing that the administrator needs to do is to create a policy. The

administrator heads to the policy generation page,

http://dig.csail.mit.edu/2009/policy-assurance/generator/

25

The administrator clicks the “Restriction Policy” link, since this policy is most in

line with what the administrator wants to do. The administrator enters the following

input:

• Policy name: no-address

• Policy description: Users may not find the home address of members of the

database.

• Namespaces: @prefix ex: <http://example.com/#>.

• Included attributes: Variable: ex:address. Click “both” to check USE and

RETRIEVE.

The administrator clicks “Submit!” to generate the policy (see figure 2-2), and it

appears in Tabulator as shown in figure 2-3.

The administrator can type Ctrl+U to see the source AIR code of the policy. The

source of this policy is in the appendix B.12.

The policy has a unique URI. Since the administrator will need the URI later, the

administrator saves the URI, as in figure 2-4.

2.4.2 Checking a Compliant Query

An administrator wants to check the following SPARQL query for compliance. Since

it does not mention ex:address, the administrator suspects that it will be compliant:

PREFIX example: <http://example.com/#>

SELECT * WHERE {

?s example:ssn ?ssn.

?s example:age ?age.

?s example:name ?name.

FILTER (?age > 18)

}

26

Figure 2-2: Restriction Policy Creator Web Page

27

Figure 2-3: Tabulator Representation of the Sample “No Address” Restriction Policy

http://dig.csail.mit.edu/2009/policy-assurance/generator/make_

restriction_policy.py?policyName=no-address&textDescription=Users+may

+not+find+the+home+address+of+members+of+the+database.&namespaces=%40

prefix+ex%3A+%3Chttp%3A%2F%2Fexample.com%2F%23%3E.&Attribute1=ex%3A

address&Var1=both&url=whatever

Figure 2-4: URI for the demo “no address” policy.

28

Figure 2-5: Converting a SPARQL Query to N3

The administrator visits the translation page to perform the translation:

http://dig.csail.mit.edu/2009/policy-assurance/sparql2n3.py

The administrator enters the query into the translator and gets the result shown

in figure 2-6. The translated query appears in a Web browser in figure 2-5.

The administrator clicks the “View in Tabulator” link, to see what the translation

looks like in Tabulator. The result is in figure 2-7.

The translation has a unique URI, which is the URI of the Tabulator page. The

administrator saves the URI, as in figure 2-8, for checking the query for compliance.

29

@prefix s: <http://dig.csail.mit.edu/2009/IARPA-PIR/sparql#> .

:Query19369095151250692756 a s:SPARQLQuery;

s:clause [

s:triplePattern { :s <http://example.com/#ssn> :ssn };

s:triplePattern { :s <http://example.com/#age> :age };

s:triplePattern { :s <http://example.com/#name> :name };

s:triplePattern { :age s:booleanGT "18 "};

];

s:retrieve [

s:var :age;

s:var :name;

s:var :s;

s:var :ssn;

].

Figure 2-6: Compliant SPARQL query, converted to N3.

Figure 2-7: Tabulator Representation of a Sample SPARQL Query

30

http://dig.csail.mit.edu/2009/policy-assurance/print-input.py?input=

%40prefix+s%3A+%3Chttp%3A%2F%2Fdig.csail.mit.edu%2F2009%2FIARPA-PIR

%2Fsparql%23%3E+.%0A%0A%3AQuery19369095151250692756+a+s%3ASPARQLQuery

%3B%0A%0As%3Aclause+[%0A++s%3AtriplePattern++{+%3As+%3Chttp%3A%2F

%2Fexample.com%2F%23ssn%3E+%3Assn+}%3B%0A++s%3AtriplePattern++{+

%3As+%3Chttp%3A%2F%2Fexample.com%2F%23age%3E+%3Aage+}%3B%0A++s%3A

triplePattern++{+%3As+%3Chttp%3A%2F%2Fexample.com%2F%23name%3E+%3A

name+}%3B%0A++s%3AtriplePattern++{+%3Aage+s%3AbooleanGT+%2218+%22}%3B

%0A%0A]%3B+%0A+++s%3Aretrieve+[%0A++++++s%3Avar+%3Aage%3B%0A+++

+++s%3Avar+%3Aname%3B%0A++++++s%3Avar+%3As%3B%0A++++++s%3Avar+%3A

ssn%3B%0A].%0A%0A

Figure 2-8: URI for the translation of the compliant demo query.

To check the query for compliance against the policy, the administrator goes to

the policy execution page:

http://dig.csail.mit.edu/2009/policy-assurance/run-policy.py

The administrator pastes in the URIs of the query and the policy into the correct

text boxes, and clicks “Execute”. A “View in Tabulator” link appears, as in figure 2-

9, which the administrator clicks. The Tabulator page appears, and the administrator

views the output, as in figure 2-10. The administrator can use the justification pane

to get more information about this decision, as in figure 2-11.

2.4.3 Checking an Incompliant Query

The administrator now checks an incompliant query:

PREFIX ex: <http://example.com/#>

SELECT * WHERE {

?s ex:address ?a.

}

This translation has the URI listed in figure 2-14.

Following the same steps as before, the administrator can see that this query is

non compliant, as in figure 2-12 and 2-13.

31

Figure 2-9: Policy Execute Web Page

32

Figure 2-10: Tabulator Compliance Summary for Sample Query and Sample Policy

33

Figure 2-11: Tabulator Compliance Justification UI for Sample Query and Sample
Policy

34

Figure 2-12: Tabulator Non-Compliance Summary for Sample Query and Sample
Policy

35

Figure 2-13: Tabulator Non-Compliance Justification UI for Sample Query and Sam-
ple Policy

http://dig.csail.mit.edu/2009/policy-assurance/print-input.py?input=%

40prefix+s%3A+%3Chttp%3A%2F%2Fdig.csail.mit.edu%2F2009%2FIARPA-PIR%2F

sparql%23%3E+.%0A%0A%3AQuery4606263041250694128+a+s%3ASPARQLQuery%3B

%0A%0As%3Aclause+[%0A++s%3AtriplePattern++{+%3As+%3Chttp%3A%2F%2F

example.com%2F%23address%3E+%3Aa+}%3B%0A%0A]%3B+%0A+++s%3Aretrieve+

[%0A++++++s%3Avar+%3Aa%3B%0A++++++s%3Avar+%3As%3B%0A].%0A%0A

Figure 2-14: URI for the translation of the non-compliant demo query.

36

2.4.4 Demo Notes

This demonstration will work on any Firefox Web browser with a recent version of

the Tabulator plugin installed. Without the Tabulator plugin, the demo will work

in any Web browser. However, withou the plugin, a browser will either display the

textual output of the reasoner, or prompt the user to save the output to a file on disk.

2.5 Summary

This chapter presented an overview of the system implemented in this thesis. It de-

scribed a sample scenario, and defined three perspectives to the system. It provided a

Web based demonstration of the three major components of the system: the SPARQL

to N3 query converter, the automated policy generator, and the user-friendly reasoner

output. The following chapters offer more technical information about the design and

implementation of this system.

37

38

Chapter 3

System Detail

In this chapter, we discuss the implementation details of the policy assurance system.

Each section details a particular component of the system, discussing the design

assumptions, choices, and tradeoffs that were necessary. This chapter serves as full

and complete documentation of this project for future users and developers of the

system.

This section benefits from a working knowledge of RDF, N3, AIR, SPARQL,

Python, and C++. The code to support this discussion is included in the appendix.

3.1 SPARQL Query Translation

The policies that we defined in AIR in the previous section require SPARQL queries to

be in a particular N3 syntax in order to correctly perform reasoning. The design of the

AIR policy and the SPARQL query translation go hand in hand. The first approach

at query reasoning used a SPARQL translation that maintained the semantics of the

SPARQL query, in fulfillment of the Phase we milestone for this project. In time, we

moved to a translation that removes many of the semantics of SPARQL queries. We

discuss the details of the new translation herein.

39

Figure 3-1: A screenshot of the SPARQL to N3 translator Web page.

40

• :SPARQLQuery. Refers to a query converted to N3.

– :source. A data source for the query. In SPARQL, this can be FROM or
FROM NAMED. A :SPARQLQuery may have many of these.

– :retrieve. A list of variables to which the :SPARQLQuery refers. A
:SPARQLQuery has exactly one of these.

∗ :var. A member of the :retrieve which describes a particular vari-
able.

– :clause. The contents of the :SPARQLQuery. This corresponds to the
WHERE clause in SPARQL. A :SPARQLQuery has exactly one of these.

∗ :triplePattern. A particular line or binding in a :SPARQLQuery.

Table 3.1: Query conversion ontology.

3.1.1 SPARQL to N3 Web Page

The SPARQL to N3 Web page serves as a front-end to the conversion process discussed

in the previous section. The user inputs a well-formed SPARQL query into the form

on the page. Upon clicking submit, the page’s backend script will pass the query

to the translator, a command-line based utility. The translator then returns an N3

translation of the user’s SPARQL query to the Web page.

A user may use the SPARQL to N3 translator directly to help debug the policy

process, or to gain understanding of the query process. It is important to note that

the N3 translation does not preserve all SPARQL semantics, nor does it preserve

order in some cases. In the majority of use cases, the user will interact indirectly

with the translator.

3.1.2 Query Conversion Ontology

We define an ontology for N3 conversion of generic queries in table 3.1. All of these

names are defined in the query conversion namespace, which is:

http://dig.csail.mit.edu/2009/policy-assurance/sparql.n3#

The ontology is intentionally small, short, and simple. Whereas the first iteration

of query translation focused to have a bidirectional, complete N3 translation of a

41

ComplianceQuery

Log File: History Log File: Query

history query

SPARQLQuery

retrieve clause

RetrievedVar Clause

Variable TriplePattern

var triplePattern

- Has Property

- File

Abstract Sparql Ontology

Figure 3-2: Ontology diagram of the SPARQL translation, courtesy of Yotam Aron.

42

SPARQL query, the goal of this ontology is to facilitate the conversion of queries in

additional languages, and to contain the minimum amount of information necessary so

as to continue to be useful in making assertions according to our current policies. (An

important future work of this project, and perhaps the largest hurdle to widespread

adoption, is the support of SQL queries.)

The next subsections will demonstrate exactly how we convert a query.

3.1.3 swobjects: Parsing and Serializing

The current implementation of the SPARQL to N3 translator is an adaptation of Eric

Prud’Hommeaux’s swobjects code [11]. swobjects, per its homepage, is a suite of tools

written in C++ for performing operations upon Semantic Web objects. swobjects is

an important part of the SPASQL project, a project whose goal is to facilitate data

integration from multiple databases [12].

This project modifies the serialization engine of swobjects. The swobjects code,

in one mode of operation, will accept a SPARQL query as input, and print the same

SPARQL query as output. The swobjects code performs parsing and lexing of the

input, and creates a parse tree that it expresses. By overloading the classes of the

SPARQLSerializer code in swobjects, we were able to modify the output of a SPARQL

query. By carefully defining the output and performing a small amount of additional

processing, we are able to perform conversion.

The C++ code that overloads the SPARQLSerializer is located in the DIG repos-

itory at

http://dig.csail.mit.edu/2009/policy-assurance/sparql2n3.cpp

3.1.4 SPARQL Language Translation

In this section, we discuss the details of translating a SPARQL query to N3. The

discussion closely follows the W3C Recommendation for SPARQL [4], and uses some

queries from the DAWG test case [13]. We discuss which features we support, and

how we support them. We explain which features of the language we do not support,

43

and why we chose the approach that we did in a few situations. The translation is

incomplete; in particular, the GRAPH feature does not work, nested queries do not

work, and the FILTER keyword is only partially supported. Furthermore, whites-

pace generation needs improvement. Nevertheless, this translation is suitable for the

majority of simple SPARQL queries.

As of this writing, the query translator is live. To use it, please visit:

http://dig.csail.mit.edu/2009/policy-assurance/sparql2n3.py

Namespaces and URIs: BASE and PREFIX

A SPARQL query may specify its own namespace using the @prefix keyword, or the

@base keyword:

@prefix dc: <http://purl.org/dc/elements/1.1/> .

A namespace is shorthand, allowing truncation of URIs. For lack of ambiguity,

we kept the swobjects feature of expanding or flattening all URIs. The output of the

translation only specifies one name space: the namespace of the translation ontology.

Query Identification

Every query that goes through the translator is assigned a unique name. In the

current implementation, we cannot be assured of the uniqueness of the name, but

as it is assigned by a random number plus the current time stamp (seconds since

UNIX epoch), the probability of 1 in 232 of a collision in one second is acceptably

low. A one-way hash of a query does not work, as this causes successive translations

of the same query to have the same name. It is conceivable that a user might run

the same query, or a series of very similar queries, an arbitrary number of times. Our

policies depend on uniquely named policies to correctly determine which policies are

in compliance or violation of a policy.

44

SELECT

A SPARQL query with a SELECT clause “returns all, or a subset of, the variables

bound in a query pattern match.” Thus, a query with a SELECT clause has a variable

part and a triple pattern part.

If we input the query:

Sample SPARQL query that queries for SSN, age, OpenID.

PREFIX example: <http://example.com/#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?s ?n WHERE {

?s example:ssn ?n. ?s foaf:age ?a. ?s foaf:openid ?id.}

The translator will generate the N3 output:

@prefix s: <http://dig.csail.mit.edu/2009/IARPA-PIR/sparql#> .

:Query9743408551250696473 a s:SPARQLQuery;

s:clause [

s:triplePattern { :s <http://example.com/#ssn> :n };

s:triplePattern { :s <http://xmlns.com/foaf/0.1/age> :a };

s:triplePattern { :s <http://xmlns.com/foaf/0.1/openid> :id };

];

s:retrieve [

s:var :n;

s:var :s;

].

SELECT *

The syntax SELECT * is an abbreviation that selects all of the variables in a query [4].

To implement this, the translator adopts a special behavior when it sees SELECT

*. It will maintain a set of all variables mentioned in the body of the query. At the

end of the clause, after processing is complete, the translator will print a list of every

variable seen. In effect, this implements the correct handling of SELECT *, in line

with the “flattening” philosophy of the translator.

45

Given this example query, with a SELECT *,

Sample SPARQL query that queries for SSN, age, OpenID.

PREFIX example: <http://example.com/#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT * WHERE {

?s example:ssn ?n. ?s foaf:age ?a. ?s foaf:openid ?id.}

The translator will generate the N3 output:

@prefix s: <http://dig.csail.mit.edu/2009/IARPA-PIR/sparql#> .

:Query14924979641250696494 a s:SPARQLQuery;

s:clause [

s:triplePattern { :s <http://example.com/#ssn> :n };

s:triplePattern { :s <http://xmlns.com/foaf/0.1/age> :a };

s:triplePattern { :s <http://xmlns.com/foaf/0.1/openid> :id };

];

s:retrieve [

s:var :a;

s:var :id;

s:var :n;

s:var :s;

].

CONSTRUCT

A CONSTRUCT query is very similar to a SELECT, except in that it creates a new

RDF graph with its output. In effect, it is a union of all of the solution sets. Thus,

the useful output of a CONSTRUCT query is the same as a similar SELECT query,

in that it will only output explicit and not blank variables. The translator handles

variables in a CONSTRUCT similarly to a SELECT *: it will output every non-blank

variable mentioned in the CONSTRUCT part of the clause.

Given this example query, with a CONSTRUCT,

46

CONSTRUCT { ?s <p1> <o> . ?s <p2> ?o } WHERE {?s ?p ?o}

The translator will generate the N3 output:

@prefix s: <http://dig.csail.mit.edu/2009/IARPA-PIR/sparql#> .

:Query13731259441250696648 a s:SPARQLQuery;

s:clause [

s:triplePattern { :s :p :o };

];

s:retrieve [

s:var :o;

s:var :s;

].

Note that the variable list is always placed after the clause, due to the current

implementation of the translator. The reasoner will accept the variable list before or

after the clause without loss of functionality.

ASK

In an ASK query, the user may “test whether or not a query pattern has a solution.

No information is returned about the possible query solutions, just whether or not

a solution exists.” [4] Thus, no variables are bound or output in an ASK clause. Of

course, an ASK query may still explicitly refer to a particular field or data type which

we may wish to regulate, so it is important to capture that pattern in the output.

Given this example query, with an ASK,

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

ASK { ?x foaf:name "Alice" }

The translator will generate the N3 output:

@prefix s: <http://dig.csail.mit.edu/2009/IARPA-PIR/sparql#> .

:Query5293946291250696665 a s:SPARQLQuery;

47

s:clause [

s:triplePattern { :x <http://xmlns.com/foaf/0.1/name> "Alice" };

].

This is sensible, because even though we don’t directly output any data from the

database, we are asking about “Alice” and learning something about a foaf:name.

DESCRIBE

The SPARQL DESCRIBE construct is implementation dependent. A particular

SPARQL endpoint may implement DESCRIBE as it sees fit. From a translation

and policy standpoint, it is possible that DESCRIBE query will return information

about the variables and triple patterns it describes. Thus, we treat DESCRIBE as

we would a SELECT.

Given this example query, with a DESCRIBE,

DESCRIBE <u> ?u WHERE { <x> <q> ?u . }

The translator will generate the N3 output:

@prefix s: <http://dig.csail.mit.edu/2009/IARPA-PIR/sparql#> .

:Query2577564471250696683 a s:SPARQLQuery;

<u>s:clause [

s:triplePattern { <x> <q> :u };

];

s:retrieve [

s:var :u;

].

Query Modifiers: ORDER BY, LIMIT, OFFSET, DISTINCT, REDUCED

SPARQL supports a number of query modifiers that alter the output. ORDER BY

serves to sort the output by its argument. LIMIT reduces the number of patterns

48

that a query may bind. OFFSET works with ORDER BY and LIMIT to select a

subset of the full output. DISTINCT and REDUCED change how a SPARQL query

will handle duplicates.

These query modifiers form important parts of SPARQL’s semantics. However,

from a policy standpoint, their results are highly data dependent. Since the trans-

lation must be as pessimistic as possible, it simply drops these keywords from the

output.

OPTIONAL

The OPTIONAL keyword serves to make a query pattern conditional. Normally,

individual query triple patterns are mandatory, and all of them must be satisfied if

they chain together. An OPTIONAL pattern is not mandatory. It will return results

if they are present in the store, but will not fail if there is no data to support it.

Since our translator must take a pessimistic stance, we simply drop the OP-

TIONAL keyword from the translation. Our policies must be able to detect if there

is any possibility that a triple pattern will result in a binding. It is unimportant

whether or not the pattern is mandatory if we assume that it will have a binding.

UNION

The UNION keyword allows the user to specify alternatives to a query pattern bind-

ing. This allows multiple results to be concatenated. The translator simply drops the

UNION keyword, since policies do not need to use its semantics.

Given this example query, with a UNION,

PREFIX dc10: <http://example/1.0/>

PREFIX dc11: <http://example/1.1/>

SELECT ?title

WHERE { { ?book dc10:title ?title }

UNION

{ ?book dc11:title ?title } }

49

Operator Name Translation
- arithmeticNegation :arithmeticNegation
/ arithmeticInverse :arithmeticInverse
+ arithmeticSum :arithmeticSum
* arithmeticProduct :arithmeticProduct
& booleanConjunction :booleanAND
| booleanDisjunction :booleanOR
! booleanNegation :booleanNOT
= booleanEQ :booleanEQ
!= booleanNE :booleanNE
< booleanLT :booleanLT
> booleanGT :booleanGT
<= booleanLE :booleanLE
>= booleanGE :booleanGE

Table 3.2: Conversion of Boolean operators. The “name” refers to the title of the
operator in the translator code. The “translation” is what the translator outputs, in
the query translation namespace.

The translator will generate the N3 output:

@prefix s: <http://dig.csail.mit.edu/2009/IARPA-PIR/sparql#> .

:Query15319361881250696825 a s:SPARQLQuery;

s:clause [

s:triplePattern { :book <http://example/1.0/title> :title };

s:triplePattern { :book <http://example/1.1/title> :title };

];

s:retrieve [

s:var :title;

].

Boolean Functions

SPARQL FILTERs support a number of boolean operators. The translation changes

those operators into terms defined in its namespace. This allows the writing of policies

that can detect these operators. A future work is to declare these as equal to other

operators in other ontologies. The current translation is in table 3.2.

50

Built-in Functions: STR, LANG, LANGMATCHES, DATATYPE, BOUND,

sameTERM, isURI, isIRI, isLITERAL, REGEX, true, false

SPARQL supports a number of built in functions for query processing. Their primary

use is to serve as arguments to the FILTER keyword. Our translation does not support

these built in functions at present.

FILTER

The FILTER keyword in SPARQL allows the user to restrict a query’s output based

on a condition. The condition may be a triple pattern, which we fully support and

exemplify below. Alternately, the condition may include a built-in function, which

we do not support; the most popular form if this is FILTER REGEX. In terms of

writing policies, a FILTER counts as a “use” of a policy. In the case of a triple

pattern, our translator drops the FILTER keyword, as its semantics are unimportant

to the translator, and includes the triple pattern from the FILTER.

Given this example query, with a FILTER,

SELECT * WHERE { FILTER (?o>5) . ?s ?p ?o }

The translator will generate the N3 output:

@prefix s: <http://dig.csail.mit.edu/2009/IARPA-PIR/sparql#> .

:Query10909264011250696848 a s:SPARQLQuery;

s:clause [

s:triplePattern { :s :p :o };

s:triplePattern { :o s:booleanGT "5 "};

];

s:retrieve [

s:var :o;

s:var :p;

s:var :s;

].

51

GRAPH

The GRAPH keyword restricts a particular pattern to only apply to unnamed (using

the FROM keyword) or named (using the FROM NAMED keyword) graphs. If used

in conjunction with a named graph, the result will note which graph contained the

matching result. At present, the translation does not support the GRAPH keyword.

It requires some further consideration, as it is difficult to express and complicates a

query.

One possibility is to simply drop it; this would easily support all of the semantics

of an unnamed graph query, and allow us to write policies that simply check which

graphs we include with FROM or FROM NAMED. Another, more sophisticated,

approach would be to generate several equivalent queries, in effect flattening the

GRAPH keyword. With multiple uses of GRAPH in a query, this could easily grow

exponentially.

3.1.5 Lost in Translation

As mentioned earlier, our original translation maintained more SPARQL semantics.

This approach is deprecated in favor of the approach described here, but for com-

pleteness, we include a SPARQL query with translations under the old and new

translations.

Given this SPARQL query as input,

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX type: <http://dig.csail.mit.edu/2009/IARPA-PIR/generic#>

SELECT ?s ?b ?c WHERE {

?s type:b ?b.

?s type:c ?c.

}

the first version of the translation would have yielded this output,

@prefix type: <http://dig.csail.mit.edu/2009/IARPA-PIR/generic#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

52

@prefix math: <http://www.w3.org/2000/10/swap/math#>.

@prefix s: <http://dig.csail.mit.edu/2009/IARPA-PIR/sparql#> .

@prefix : <http://dig.csail.mit.edu/2009/IARPA-PIR/query1#> .

:Query-1 a s:Select;

s:cardinality :ALL;

s:POSList [

s:variable :S;

s:variable :B;

s:variable :C;

];

s:WhereClause :WHERE.

:WHERE a s:DefaultGraphPattern;

s:TriplePattern { :S type:B :B };

s:TriplePattern { :S type:C :C }.

#ends

whereas the current version of the translator yields this output.

@prefix s: <http://dig.csail.mit.edu/2009/IARPA-PIR/sparql#> .

:Query6088797851250696900 a s:SPARQLQuery;

s:clause [

s:triplePattern { :s <http://dig.csail.mit.edu/2009/

IARPA-PIR/generic#b> :b };

s:triplePattern { :s <http://dig.csail.mit.edu/2009/

IARPA-PIR/generic#c> :c };

];

s:retrieve [

s:var :b;

s:var :c;

s:var :s;

].

The first version closely preserved most, if not all, of the SPARQL semantics. We

found this approach to be cumbersome, as it required writing brittle policies that

closely followed SPARQL query semantics. The old approach did not scale well, and

did not lend itself to automated policy generation.

53

3.1.6 Translator Summary

The translator presented herein is novel, in that we know of no prior attempt to

express a SPARQL query in N3 for any reason. The implementation of the translator

offers insight as to exactly what parts of an arbitrary query give it structure and

permit reasoning. We found that most of the SPARQL semantics simply led to more

complicated policies, and were redundant.

3.2 AIR Policy Generation

3.2.1 Templates for Policy Generation

The goal of this project is to make policy assurance accessible to a user with an inter-

mediate level of technical understanding, without a thorough grounding in Semantic

Web technologies. To this end, this project offers a number of templates that allow

a user to directly create policies according to several fixed design patterns. With a

list of attributes as an input, the policy generator will create a valid AIR policy to

facilitate reasoning.

All of these templates work on the level of single attributes. Furthermore, the

policies that the templates generate rely on matching very particular triple patterns.

Though users can represent many policies with a combination of one or more tem-

plates, there are policies that the templates cannot describe. These patterns cover

some basic cases, and provide a starting point for more advanced policies. A descrip-

tion of some of the common design patterns follows. An advanced, AIR-savvy user is

still able to create their own policies.

3.2.2 Supported Policy Types

At this time, this project defines five separate kinds of policies. These policies are

designed to be templates, to help an administrator create or implement more sophis-

ticated policies. These policies do not necessarily exhaust the space of policies that

this system can represent, but serve as a basis for many policies. Each policy works

54

by matching a particular variable type or attribute, and taking action when it finds

that type. The five policies, in no particular order, perform as described on variable

types that a user enters.

• Restriction. Blocks access to a variable type.

• Inclusion. Lumps variable types together, so a user must access either all of

them or none of them.

• Exclusion. Allows a user access to all but one of the specified variable types.

• Chaining. Accepts a list of variable types. If the user mentions the first

variable type, chaining takes action if it sees any of the following variable types.

• Default Deny. Restricts access to the specified variable types.

The following sections describe the implementation details of each of these policies.

To USE and to RETRIEVE

All of the policy templates in this section implement patterns which detect two com-

mon usage patterns, USE and RETRIEVE. To USE an attribute is to pull it from a

database and make decisions based on its value. To RETRIEVE an attribute is to pull

it from a database and display it directly to the user. It is possible to USE an attribute

without a RETRIEVE, and vice versa.

When a user submits a query to USE a variable, the policy detects this by searching

for a particular triple pattern:

:W s:triplePattern :T;

:T log:includes { [] example:age :V };

:W s:triplePattern :U;

:U log:includes { :V [] [] }.

The policy is looking for a pair of triple patterns to detect usage. In the first triple

pattern, a variable is the object of a triple pattern, with an attribute as the predicate.

55

In the second triple pattern, the variable that was the object of the first pattern is

now the subject. This ascertains that a user bound a variable to a certain attribute,

and is trying to use that same variable for further processing. As an example, the

following query would match this pattern.

Sample SPARQL query that queries for SSN, age, OpenID.

PREFIX example: <http://example.com/#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT * WHERE {

?s example:ssn ?n. ?s foaf:age ?a. ?s foaf:openid ?id.

FILTER (?a > 18) }

This query, translated into N3 with the aforementioned converter, appears as

follows.

@prefix s: <http://dig.csail.mit.edu/2009/IARPA-PIR/sparql#> .

:Query-1644923176 a s:SPARQLQuery;

s:retrieve [

];

s:clause [

s:triplePattern { :s <http://example.com/#ssn> :n };

s:triplePattern { :s <http://xmlns.com/foaf/0.1/age> :a };

s:triplePattern { :s <http://xmlns.com/foaf/0.1/openid> :id };

s:triplePattern { :a s:booleanGT "18 "};

];

s:retrieve [

s:var :a;

s:var :id;

s:var :n;

56

s:var :s;

].

In particular, the USE policy would find two triple patterns of interest, indicating

that the user’s query is trying to USE something with an attribute of foaf:age:

s:triplePattern { :s <http://xmlns.com/foaf/0.1/age> :a };

s:triplePattern { :a s:booleanGT "18 "};

A user may RETRIEVE an attribute independently of trying to USE it. When trying

to RETRIEVE, a user will submit a query that binds an output variable to a particular

attribute. In other words, the user submits a SPARQL query for verification, with

a {subject, predicate, object} triple in which the predicate is a type (specifically, a

URI, like example:dob), and the object is a variable, like :V. The reasoner uses this

information to decide, “:V is a variable that will match things of type example:dob.”

The policy looks at variables in the context of attributes in the database, instead

of the actual, bound values within the database itself, since our policies never look

inside the database.

The following code demonstrates an AIR pattern that will catch a user trying to

RETRIEVE an attribute with a type example:dob.

:P s:var :V;

:W s:triplePattern :T;

:T log:includes { [] example:dob :V }

To RETRIEVE an attribute, a user must explicitly SELECT a variable (or SELECT *),

and bind it in a triple pattern as the object, with the attribute as the subject. In the

aforementioned query, a user’s attempt to RETRIEVE an attribute of type example:ssn

is evident with these N3 statements.

s:retrieve [

s:var :n;]

s:clause [

s:triplePattern { :s <http://example.com/#ssn> :n };]

57

The important distinction between RETRIEVE and USE is that the former allows

a user to access data in a data set directly, while the latter does not. Once a user

has seen a particular piece of data, the policy assurance framework considers it to be

“public”. There may be incentives in place for the user to control data retrieved from

a data set, but those incentives are external to the policies.

The distinction between USE and RETRIEVE is intended for honest, but curious,

users, to help keep them honest. An attacker could easily write a series of USE

policies that return data that is equivalent to a RETRIEVE. For example, the author’s

calculations based on publicly available Social Security Administration data shows

that there are 746,347,500 possible Social Security numbers. If a policy prevents a

user from directly seeing a Social Security number in a database, the user could simply

exhaust the SSN space using USE queries. An administrator can specify policies that

limit the number of times a user can access a particular attribute. A true security

approach with a malicious user in mind is an important future work, well outside the

scope of this thesis.

With these common access patterns defined, it is possible to write template policies

that can flag these accesses.

The discussion of sample policy templates uses possible fields from a database

of personal information. Specifically, it uses example:name for a person’s name,

example:age for a person’s date of birth, example:dob for a person’s date of birth,

and example:ssn for a person’s social security number. In practice, a system of real-

world policies would require multiple AIR policies; an important future work would

help a user with this task.

The template policies are restriction, inclusion, exclusion, history-aware exclusion,

chaining, and default deny. A description of each template policy follows. Samples

of all of these policies are available in the appendix. Furthermore, tables which

demonstrate how these ideas become policies appear at 3.3 and 3.4. 1

58

Restriction

A restriction policy disallows a user from performing a USE or RETRIEVE opera-

tion (or both) concerning any data with a particular attribute. The policy implicitly

implies that a user can see all of the data in a data set, with the exception of the

restrictions put in place by a restriction policy. Restriction is most helpful for con-

trolling the way a user interacts with data of a particular attribute.

The sample restriction policy in appendix section B.6 states that a user:

• May not RETRIEVE any attribute of type example:name.

• May not USE any attribute of type example:age.

• May not RETRIEVE any attribute of type example:dob.

• May not USE any attribute of type example:ssn.

A user may, for example, USE an attribute of type example:name, since it is a

pattern that the policy does not mention.

The policy runner will assert that the user is not in compliance with this policy

if it finds any one of those usage patterns in a query. It will return the decision, with

an explanation. The policy runner does not evaluate patterns in any particular order.

In practice, a restriction policy would be most useful with a default deny policy in

place.

Inclusion

An inclusion policy requires that a user tie together certain actions. Inclusion imple-

ments an all or none policy that is only available using two or more attributes. An

administrator might use this policy to ensure that two fields in a data set are always

coupled.

The sample restriction policy in appendix section B.7 states that a user’s query

is compliant if the query will:

• RETRIEVE any attribute of type example:name, AND

59

• USE any attribute of type example:age, AND

• RETRIEVE any attribute of type example:dob, AND

• USE any attribute of type example:ssn.

If a query contains any subset of these patterns, but not all of them, the query is

incompliant. If the query does not contain any of these patterns, it is compliant.

In practice, an inclusion policy likely has little use. A policy that requires a

mandatory filter, such as an age filter, will use chaining and not inclusion.

Exclusion

An exclusion policy is, in effect, the inverse of an inclusion policy. It allows an

administrator to tie together a number of patterns. Under an exclusion policy, a

user’s query (or query history) may contain “all but one” of the patterns in the

policy.

The sample exclusion policy in appendix section B.8 states that a user’s query is

not compliant if the query will:

1. RETRIEVE any attribute of type example:name, AND

2. USE any attribute of type example:age, AND

3. RETRIEVE any attribute of type example:dob, AND

4. USE any attribute of type example:ssn.

A user’s query may access all but one of these patterns with an AND relation,

or none of them at all. As an example, the user can RETRIEVE example:name

and RETRIEVE example:dob and USE example:ssn, either in one query or in

successive queries if history is enabled. If the user does this, they will not be able to

USE example:age. Exhaustively, if we use the notation {a ∧
b

∧
. . .} to express a user

trying to access attributes from the above list, the user may NOT do {1 ∧
2

∧
3

∧
4},

but may do any subset of that, including {} (nothing).

60

Exclusion is the only basic policy construct for which it makes sense to use a

history. The sample policy in appendix section B.9 demonstrates how a policy needs

to change in order to support query history. In a break from all other policies, a

history-aware policy needs to have an idea of which is the current query, and which

are the past queries. This is important, since AIR, a production rule system, does

not support any concept or order or counting. A history-aware policy will assert

non-compliance if it matches all of the patterns in the policy, regardless of whether

those patterns are contained solely in the history, solely in the current query, or in

some combination of current and past queries. A full explanation of query history

follows in the next section.

Originally, this project sought to include a MAX(m, n) construct. Exclusion

implements a MAX(n − 1, n) policy, where a user can see at most n − 1 out of n

patterns. Implementing the more general MAX(m, n) for m ≤ n and n > 0 involves

combinatorics and does not scale well. Finding an efficient, scalable implementaiton

of general MAX(m, n) is an important future work.

Chaining

The chaining policy allows an administrator to implement policies in the form IF

. . . THEN . . . ; to detect the presence of a pattern and determine compliance or non

compliance based on the presence of future patterns. A chaining policy can either be

default compliant (in which case a pattern match asserts non-compliance), or default

non-compliant. The code for the chaining policy generator supports RETRIEVE and

USE, as well as filter patterns.

The sample chaining policy in appendix section B.10, a default non-compliant

policy, will try to match the first pattern. If it succeeds, it will make an assertion

if it finds any of the successive patterns, and will go to the default if it finds none

of them. It walks though the patterns one after the other, as links in a chain. The

sample policy states:

• If a user wishes to RETRIEVE any attribute of type example:name, the user must

61

– USE an attribute of type example:age, OR

– RETRIEVE an attribute of type example:dob, OR

– USE an attribute of type example:ssn, OR

– Include a filter of the form example:age > 18.

More generally, chaining specifies a policy of the form “if A matches, take action

if B or C or . . . is found.” A, B, C, . . . can be either a USE or RETRIVE, and “take

action” is either “assert compliance” or “assert noncompliance”. To match a pattern

that is not some form of USE or RETRIEVE, the administrator would need to code

this manually; there is no facility in the user interface for the input of a pattern.

Furthermore, since the reasoner only looks at the queries to a system, and not their

results, making policies that fire if certain data is in the database is not possible. As

an example, consider a policy that says, “you may not RETRIEVE any attribute of

type example:name if the value of name is John.” We can’t check to see that a name

has value John, so we can’t use exclusion here. What we might do instead is to create

a policy that requires a user to specify “example:name ! = John” in every query they

submit.

Chaining is helpful when an administrator would like to provisionally provide

access to a certain attribute. With a chaining policy, the administrator can require

a particular filter or other pattern to be present in order for compliance. Since this

works at the granularity of a single query, using a history does not make sense for

this policy!

Default Deny

The last of the primitives for automatic policy generation, default deny allows an

administrator to impose limitations on all queries. Whereas all of the previous policies

made no assumption about the size of the world by assuming an open world, default

deny imposes strong restrictions by closing the space of possible queries to only match

a few particular patterns. This is analogous to the GRANT feature of SQL databases,

which explicitly enables permissions to a particular field. This policy family is called

62

“default deny” because any pattern that it does not expressly enumerate is, by default,

not compliant with the policy.

The sample default deny policy in appendix section B.11 states that a user’s query

is compliant only if every single triple pattern in its translation matches one of the

following patterns, where [] is a wildcard that can match anything:

• [] example:name []

• [] example:age []

• [] example:dob []

• [] example:ssn []

Implicitly, this policy allows a user to RETRIEVE or USE any of these attributes,

to use filters, or to peform any operation that specifically matches one of those four

patterns.

In practice, a default deny policy can set the ground rules for access to a particular

data set. By explicitly giving permissions to certain triple patterns, the administrator

can guarantee closure on the policies. In conjunction with the other template policies,

an administrator can offer a level of access between ‘all’ and ‘none’.

3.2.3 Automatic Policy Generation

The table that follows demonstrates how the aforementioned policy templates gen-

erate policies based on user input. The purpose of the table is to show how the

generation of all policies is similar, and how each policy scales with multiple vari-

ables. The author prepared these tables to provide a reference for implementing each

policy template.

There are two tables: one for USE policies, and one for RETRIEVE policies.

Along the top row of each table are the five policy types. Each table is divided in

half: the top half of each table demonstrates what happens if a user enters a single

variable type or attribute (say type:A), and the bottom half shows what happens

63

if a user enters two or more variable types or attributes (say type:A, type:B, and

possible type:C). The three rows - AIR Rule, Description, Action - explain how a

policy gets generated, and what it does. The AIR Rule(s) row shows the snippet of

AIR code that forms the important part of the policy. Some policies require several

AIR rules to express their functionality, particularly those with multiple variables.

The table illustrates AIR code that would appear in separate rules by separating it

with a blank line (two newlines). In reality, each policy contains a large amount of

boilerplate code, but this snippet really defines the policy. The Description row offerse

a terse explanation of the effect of the policy, and the Action row shows what action

the reasoner takes when it matches the code in the Rule row. All of these policies

depend on a boilerplate that defines :Q as a s:SPARQLQuery, with a s:retrieve part

:P and a s:clause part :W.

As an example, consider a policy where an administrator wants to create an Inclu-

sion policy, which specifies that a user must either USE type:A and type:B together

in a query, or not at all. The chart demonstrates how the policy generator will create

this policy. This is a USE policy, so the template is listed in the USE table. It is

an Inclusion policy, which is the third column from the left. This policy mentions

multiple variables, so the information that describes it is in the bottom half of the

table. In particular, three cells describe the AIR Rule(s), the Description, and the

Action of this policy. The AIR Rule(s) row tells us that this policy will have three

separate AIR rules that perform pattern matching: one that looks for both type:A

and type:B used together, and one each looking for type:A or type:B. The Descrip-

tion row tells us what the policy tries to accomplish, and the Action row describes

the action the reasoner takes upon a match between the policy and the query.

Some policies support a “hybrid”, whereby a policy can act on a query that tries

to USE some attribute(s) and tries to RETRIEVE some other attribute(s). These

cases are listed in the Notes row of the USE table. Some policy types do not make

sense, so the table marks them as unsupported.

64

U
S
E

R
e
s
t
r
ic

t
io

n
U

S
E

I
n
c
lu

s
io

n
U

S
E

E
x
c
lu

s
io

n
U

S
E

C
h
a
in

in
g

U
S
E

D
e
fa

u
lt

D
e
n
y

S
in

g
le

A
IR

ru
le

(s
)

:W
s:

tr
ip

le
P
a
tt

e
rn

:T
.

:T
lo

g
:i
n
c
lu

d
e
s

[]
ty

p
e
:S

S
N

:V
.

:W
s:

tr
ip

le
P
a
tt

e
rn

:U
.

:U
lo

g
:i
n
c
lu

d
e
s

:V
[]

[]
.

U
n
su

p
p
o
rt

e
d
.

U
n
su

p
p
o
rt

e
d
.

:W
s:

tr
ip

le
P
a
tt

e
rn

:T
1
.

:T
1

lo
g
:i
n
c
lu

d
e
s

[]
ty

p
e
:A

:V
1

.
:W

s:
tr

ip
le

P
a
tt

e
rn

:U
1
.

:U
1

lo
g
:i
n
c
lu

d
e
s

:V
1

[]
[]

.

:W
s:

tr
ip

le
P
a
tt

e
rn

:T
2
.

:T
lo

g
:i
n
c
lu

d
e
s

[]
ty

p
e
:B

:V
2

.
:W

s:
tr

ip
le

P
a
tt

e
rn

:U
2
.

:U
2

lo
g
:i
n
c
lu

d
e
s

:V
2

[]
[]

.

:W
s:

tr
ip

le
P
a
tt

e
rn

:T
.

:T
lo

g
:n

o
tI

n
c
lu

d
e
s

[]
ty

p
e
:A

[]
.

D
e
sc

ri
p
ti

o
n

C
a
n
n
o
t

u
se

a
n
y
th

in
g

o
f
ty

p
e
:A

.
-

-
If

u
si

n
g

ty
p
e
:A

,
m

u
st

n
o
t

u
se

ty
p
e
:B

.
M

a
y

o
n
ly

u
se

ty
p
e
:A

.

A
c
ti

o
n

a
ir

:a
ss

e
rt

:Q
a
ir

:n
o
n
-c

o
m

p
li
a
n
t-

w
it

h
:W

h
a
te

v
e
r-

P
o
li
c
y

;
-

-
If

fi
rs

t
ru

le
m

a
tc

h
e
s,

a
ss

e
rt

n
o
n
-c

o
m

p
li
a
n
c
e

if
se

c
o
n
d

ru
le

m
a
tc

h
e
s.

D
e
fa

u
lt

is
c
o
m

p
li
a
n
c
e
.

(C
a
n

h
a
v
e

n
e
g
a
te

d
v
e
rs

io
n

a
s

w
e
ll
.)

A
ss

e
rt

n
o
n
-c

o
m

p
li
a
n
c
e
,

si
n
c
e

y
o
u

fo
u
n
d

so
m

e
th

in
g

o
th

e
r
th

a
n

ty
p
e
:A

.
N

o
d
is

ti
n
c
ti

o
n

b
e
tw

e
e
n

U
S
E

a
n
d

R
E
T

R
IE

V
E
.

M
u
lt

ip
le

A
IR

ru
le

(s
)

:W
s:

tr
ip

le
P
a
tt

e
rn

:T
1
.

:T
1

lo
g
:i
n
c
lu

d
e
s

[]
ty

p
e
:A

:V
1

.
:W

s:
tr

ip
le

P
a
tt

e
rn

:U
1
.

:U
1

lo
g
:i
n
c
lu

d
e
s

:V
1

[]
[]

.

:W
s:

tr
ip

le
P
a
tt

e
rn

:T
2
.

:T
lo

g
:i
n
c
lu

d
e
s

[]
ty

p
e
:B

:V
2

.
:W

s:
tr

ip
le

P
a
tt

e
rn

:U
2
.

:U
2

lo
g
:i
n
c
lu

d
e
s

:V
2

[]
[]

.

:W
s:

tr
ip

le
P
a
tt

e
rn

:T
1
.

:T
1

lo
g
:i
n
c
lu

d
e
s

[]
ty

p
e
:A

:V
1

.
:W

s:
tr

ip
le

P
a
tt

e
rn

:U
1
.

:U
1

lo
g
:i
n
c
lu

d
e
s

:V
1

[]
[]

.
:W

s:
tr

ip
le

P
a
tt

e
rn

:T
2
.

:T
lo

g
:i
n
c
lu

d
e
s

[]
ty

p
e
:B

:V
2

.
:W

s:
tr

ip
le

P
a
tt

e
rn

:U
2
.

:U
2

lo
g
:i
n
c
lu

d
e
s

:V
2

[]
[]

.

:W
s:

tr
ip

le
P
a
tt

e
rn

:T
1
.

:T
1

lo
g
:i
n
c
lu

d
e
s

[]
ty

p
e
:A

:V
1

.
:W

s:
tr

ip
le

P
a
tt

e
rn

:U
1
.

:U
1

lo
g
:i
n
c
lu

d
e
s

:V
1

[]
[]

.

:W
s:

tr
ip

le
P
a
tt

e
rn

:T
2
.

:T
lo

g
:i
n
c
lu

d
e
s

[]
ty

p
e
:B

:V
2

.
:W

s:
tr

ip
le

P
a
tt

e
rn

:U
2
.

:U
2

lo
g
:i
n
c
lu

d
e
s

:V
2

[]
[]

.

:W
s:

tr
ip

le
P
a
tt

e
rn

:T
1
.

:T
1

lo
g
:i
n
c
lu

d
e
s

[]
ty

p
e
:A

:V
1

.
:W

s:
tr

ip
le

P
a
tt

e
rn

:U
1
.

:U
1

lo
g
:i
n
c
lu

d
e
s

:V
1

[]
[]

.
:W

s:
tr

ip
le

P
a
tt

e
rn

:T
2
.

:T
lo

g
:i
n
c
lu

d
e
s

[]
ty

p
e
:B

:V
2

.
:W

s:
tr

ip
le

P
a
tt

e
rn

:U
2
.

:U
2

lo
g
:i
n
c
lu

d
e
s

:V
2

[]
[]

.

:W
s:

tr
ip

le
P
a
tt

e
rn

:T
1
.

:T
1

lo
g
:i
n
c
lu

d
e
s

[]
ty

p
e
:A

:V
1

.
:W

s:
tr

ip
le

P
a
tt

e
rn

:U
1
.

:U
1

lo
g
:i
n
c
lu

d
e
s

:V
1

[]
[]

.

:W
s:

tr
ip

le
P
a
tt

e
rn

:T
2
.

:T
lo

g
:i
n
c
lu

d
e
s

[]
ty

p
e
:B

:V
2

.
:W

s:
tr

ip
le

P
a
tt

e
rn

:U
2
.

:U
2

lo
g
:i
n
c
lu

d
e
s

:V
2

[]
[]

.

:W
s:

tr
ip

le
P
a
tt

e
rn

:T
3
.

:T
lo

g
:i
n
c
lu

d
e
s

[]
ty

p
e
:C

:V
3

.
:W

s:
tr

ip
le

P
a
tt

e
rn

:U
3
.

:U
3

lo
g
:i
n
c
lu

d
e
s

:V
3

[]
[]

.

:W
s:

tr
ip

le
P
a
tt

e
rn

:T
.

:T
lo

g
:n

o
tI

n
c
lu

d
e
s

[]
ty

p
e
:A

[]
. :T

lo
g
:n

o
tI

n
c
lu

d
e
s

[]
ty

p
e
:B

[]
.

D
e
sc

ri
p
ti

o
n

C
a
n
n
o
t

u
se

a
n
y
th

in
g

o
f

ty
p
e
:A

o
r
ty

p
e
:B

.
A

c
ti

o
n

is
ta

k
e
n

if
a
n
y

p
a
tt

e
rn

m
a
tc

h
e
s.

D
e
fa

u
lt

s
to

c
o
m

p
li
a
n
c
e
.

If
u
si

n
g

ty
p
e
:A

,
m

u
st

a
ls

o
u
se

ty
p
e
:B

.
A

ll
o
r

n
o
n
e
.

C
a
n
n
o
t

u
se

ty
p
e
:A

a
n
d

ty
p
e
:B

.
G

e
n
e
ra

li
z
e
s

to
M

A
X

(N
-1

,N
)

If
u
si

n
g

ty
p
e
:A

m
u
st

n
o
t

u
se

ty
p
e
:B

o
r

ty
p
e
:C

.
M

a
y

o
n
ly

u
se

ty
p
e
:A

o
r

ty
p
e
:B

.

A
c
ti

o
n

a
ir

:a
ss

e
rt

:Q
a
ir

:n
o
n
-c

o
m

p
li
a
n
t-

w
it

h
:W

h
a
te

v
e
r-

P
o
li
c
y

;
A

ss
e
rt

c
o
m

p
li
a
n
c
e

if
fi
rs

t
p
a
t-

te
rn

is
m

e
t.

A
ss

e
rt

n
o
n
-

c
o
m

p
li
a
n
c
e

if
a
n
y

re
m

a
in

in
g

p
a
tt

e
rn

s
a
re

m
e
t.

A
ss

e
rt

c
o
m

-
p
li
a
n
c
e

if
n
o

p
a
tt

e
rn

s
a
t

a
ll

a
re

m
e
t.

A
ss

e
rt

n
o
n
-c

o
m

p
li
a
n
c
e
.

If
fi
rs

t
ru

le
m

a
tc

h
e
s,

a
ss

e
rt

n
o
n
-

c
o
m

p
li
a
n
c
e

if
a
n
y

o
f
th

e
fo

ll
o
w

-
in

g
ru

le
s
m

a
tc

h
.

D
e
fa

u
lt

is
c
o
m

-
p
li
a
n
c
e
.

(C
a
n

h
a
v
e

n
e
g
a
te

d
v
e
r-

si
o
n

a
s

w
e
ll
.)

A
ss

e
rt

n
o
n
-c

o
m

p
li
a
n
c
e
,

si
n
c
e

y
o
u

fo
u
n
d

so
m

e
th

in
g

o
th

e
r
th

a
n

ty
p
e
:A

o
r
ty

p
e
:B

.
N

o
d
is

ti
n
c
ti

o
n

b
e
tw

e
e
n

U
S
E

a
n
d

R
E
T

R
IE

V
E
.

N
o
t
e
s

:Q
a

s:
S
P
A

R
Q

L
Q

u
e
ry

;
s:

re
tr

ie
v
e

:P
;

s:
c
la

u
se

:W
.

W
e

c
a
n

c
re

a
te

h
y
b
ri

d
p
o
li
c
ie

s,
i.
e
.

”
if

u
si

n
g

ty
p
e
:A

m
u
st

re
-

tr
ie

v
e

ty
p
e
:B

a
n
d

v
ic

e
v
e
rs

a
”
.

W
e

c
a
n

c
re

a
te

h
y
b
ri

d
p
o
li
c
ie

s,
i.
e
.

”
m

a
y

d
o

a
ll

b
u
t

o
n
e

o
f:

u
se

ty
p
e
:A

,
re

tr
ie

v
e

ty
p
e
:B

”
.

H
y
b
ri

d
s

p
o
ss

ib
le

.
C

a
n

o
n
ly

h
a
v
e

o
n
e

ty
p
e

o
n

th
e

le
ft

h
a
n
d

si
d
e
.

D
o
in

g
a
n

A
N

D
is

e
a
sy

,
th

e
O

R
in

v
o
lv

e
s

c
o
m

b
in

a
to

ri
c
s.

W
e

c
a
n

h
a
v
e

m
a
n
d
a
to

ry
fi
lt

e
rs

u
s-

in
g

th
is

p
o
li
c
y
.

H
y
b
ri

d
s

p
o
ss

ib
le

.
C

a
n

si
m

p
li
fy

to
[]

ty
p
e
:X

[]
fo

r
”
a
n
y

a
c
c
e
ss

”
.

U
S
E

o
r

R
E
T

R
IE

V
E

a
re

sp
e
c
ia

l
c
a
se

s.

T
ab

le
3.

3:
A

u
to

m
at

ic
p
ol

ic
y

ge
n
er

at
io

n
:

U
S
E

.

65

R
E
T

R
I
E
V

E
R

e
s
t
r
ic

t
io

n
R

E
T

R
I
E
V

E
I
n
c
lu

s
io

n
R

E
T

R
I
E
V

E
E
x
c
lu

s
io

n
R

E
T

R
I
E
V

E
C

h
a
in

in
g

R
E
T

R
I
E
V

E
D

e
fa

u
lt

D
e
n
y

S
in

g
le

A
IR

R
u
le

(s)
:P

s:v
a
r

:V
1
.

:W
s:trip

le
P
a
tte

rn
:T

1
.

:T
1

lo
g
:in

c
lu

d
e
s

[]
ty

p
e
:A

:V
1

U
n
su

p
p
o
rte

d
.

U
n
su

p
p
o
rte

d
.

:P
s:v

a
r

:V
1
.

:W
s:trip

le
P
a
tte

rn
:T

1
.

:T
1

lo
g
:in

c
lu

d
e
s

[]
ty

p
e
:A

:V
1

:P
s:v

a
r

:V
2
.

:W
s:trip

le
P
a
tte

rn
:T

2
.

:T
2

lo
g
:in

c
lu

d
e
s

[]
ty

p
e
:B

:V
2

D
e
sc

rip
tio

n
C

a
n
n
o
t

se
e

ty
p
e
:A

,
it

is
re

-
stric

te
d
.

-
-

If
re

trie
v
e

ty
p
e
:A

,
m

u
st

n
o
t

re
-

trie
v
e

ty
p
e
:B

.
A

c
tio

n
a
ir:a

sse
rt

:Q
a
ir:n

o
n
-c

o
m

p
lia

n
t-

w
ith

:W
h
a
te

v
e
r-P

o
lic

y
;

N
o
n
e

N
o
n
e

If
fi
rst

ru
le

m
a
tc

h
e
s,

a
sse

rt
n
o
n
-c

o
m

p
lia

n
c
e

if
se

c
o
n
d

ru
le

m
a
tc

h
e
s,

a
n
d

c
o
m

p
lia

n
c
e

if
se

c
-

o
n
d

ru
le

fa
ils.

N
o

d
istin

c
tio

n
b
e
tw

e
e
n

U
S
E

a
n
d

R
E
T

R
IE

V
E
.

S
e
e

U
S
E

ta
-

b
le

.

M
u
lt

ip
le

A
IR

R
u
le

(s)
:P

s:v
a
r

:V
1
.

:W
s:trip

le
P
a
tte

rn
:T

1
.

:T
1

lo
g
:in

c
lu

d
e
s

[]
ty

p
e
:A

:V
1

:P
s:v

a
r

:V
2
.

:W
s:trip

le
P
a
tte

rn
:T

2
.

:T
2

lo
g
:in

c
lu

d
e
s

[]
ty

p
e
:B

:V
2

:P
s:v

a
r

:V
1
.

:W
s:trip

le
P
a
tte

rn
:T

1
.

:T
1

lo
g
:in

c
lu

d
e
s

[]
ty

p
e
:A

:V
1

:P
s:v

a
r

:V
2
.

:W
s:trip

le
P
a
tte

rn
:T

2
.

:T
2

lo
g
:in

c
lu

d
e
s

[]
ty

p
e
:B

:V
2

:P
s:v

a
r

:V
1
.

:W
s:trip

le
P
a
tte

rn
:T

1
.

:T
1

lo
g
:in

c
lu

d
e
s

[]
ty

p
e
:A

:V
1

:P
s:v

a
r

:V
2
.

:W
s:trip

le
P
a
tte

rn
:T

2
.

:T
2

lo
g
:in

c
lu

d
e
s

[]
ty

p
e
:B

:V
2

:P
s:v

a
r

:V
1
.

:W
s:trip

le
P
a
tte

rn
:T

1
.

:T
1

lo
g
:in

c
lu

d
e
s

[]
ty

p
e
:A

:V
1

:P
s:v

a
r

:V
2
.

:W
s:trip

le
P
a
tte

rn
:T

2
.

:T
2

lo
g
:in

c
lu

d
e
s

[]
ty

p
e
:A

:V
2

:P
s:v

a
r

:V
1
.

:W
s:trip

le
P
a
tte

rn
:T

1
.

:T
1

lo
g
:in

c
lu

d
e
s

[]
ty

p
e
:A

:V
1

:P
s:v

a
r

:V
2
.

:W
s:trip

le
P
a
tte

rn
:T

2
.

:T
2

lo
g
:in

c
lu

d
e
s

[]
ty

p
e
:B

:V
2

:P
s:v

a
r

:V
3
.

:W
s:trip

le
P
a
tte

rn
:T

3
.

:T
3

lo
g
:in

c
lu

d
e
s

[]
ty

p
e
:C

:V
3

D
e
sc

rip
tio

n
C

a
n
n
o
t

se
e

ty
p
e
:A

o
r

ty
p
e
:B

,
th

e
y

a
re

re
stric

te
d
.

T
a
k
e

a
c
tio

n
o
f
a
n
y

p
a
tte

rn
m

a
tc

h
e
s.

If
re

trie
v
in

g
ty

p
e
:A

,
m

u
st

a
lso

u
se

ty
p
e
:B

.
A

ll
o
r

n
o
n
e
.

C
a
n
n
o
t

re
trie

v
e

ty
p
e
:A

a
n
d

ty
p
e
:B

.
G

e
n
e
ra

liz
e
s

to
M

A
X

(N
-

1
,N

)

If
re

trie
v
e

ty
p
e
:A

m
u
st

n
o
t

re
-

trie
v
e

ty
p
e
:B

o
r

ty
p
e
:C

.

A
c
tio

n
a
ir:a

sse
rt

:Q
a
ir:n

o
n
-c

o
m

p
lia

n
t-

w
ith

:W
h
a
te

v
e
r-P

o
lic

y
;

A
sse

rt
c
o
m

p
lia

n
c
e

if
fi
rst

p
a
t-

te
rn

is
m

e
t.

A
sse

rt
n
o
n
-

c
o
m

p
lia

n
c
e

if
a
n
y

re
m

a
in

in
g

p
a
tte

rn
s

a
re

m
e
t.

A
sse

rt
c
o
m

-
p
lia

n
c
e

if
n
o

p
a
tte

rn
s

a
t

a
ll

a
re

m
e
t.

A
sse

rt
n
o
n
-c

o
m

p
lia

n
c
e
.

If
fi
rst

ru
le

m
a
tc

h
e
s,

a
sse

rt
n
o
n
-

c
o
m

p
lia

n
c
e

if
a
n
y

o
f
th

e
fo

llo
w

-
in

g
ru

le
s
m

a
tc

h
,
a
n
d

c
o
m

p
lia

n
c
e

if
th

e
y

a
ll

fa
il.

N
o

d
istin

c
tio

n
b
e
tw

e
e
n

U
S
E

a
n
d

R
E
T

R
IE

V
E
.

S
e
e

U
S
E

ta
-

b
le

.

N
o
t
e
s

W
e

c
a
n

c
re

a
te

h
y
b
rid

p
o
lic

ie
s,

i.e
.

”
if

u
sin

g
ty

p
e
:A

m
u
st

re
-

trie
v
e

ty
p
e
:B

a
n
d

v
ic

e
v
e
rsa

”
.

W
e

c
a
n

c
re

a
te

h
y
b
rid

p
o
lic

ie
s,

i.e
.

”
m

a
y

d
o

a
ll

b
u
t

o
n
e

o
f:

u
se

ty
p
e
:A

,
re

trie
v
e

ty
p
e
:B

”
.

H
y
b
rid

s
p
o
ssib

le
.

C
a
n

o
n
ly

h
a
v
e

o
n
e

ty
p
e

o
n

th
e

le
ft

h
a
n
d

sid
e
.

D
o
in

g
a
n

A
N

D
is

e
a
sy

,
th

e
O

R
in

v
o
lv

e
s

c
o
m

b
in

a
to

ric
s.

W
e

c
a
n

h
a
v
e

m
a
n
d
a
to

ry
fi
lte

rs
u
s-

in
g

th
is

p
o
lic

y
.

H
y
b
rid

s
p
o
ssib

le
.

C
a
n

sim
p
lify

to
[]

ty
p
e
:X

[]
fo

r
”
a
n
y

a
c
c
e
ss”

.
U

S
E

o
r

R
E
T

R
IE

V
E

a
re

sp
e
c
ia

l
c
a
se

s.

T
ab

le
3.4:

A
u
tom

atic
p
olicy

gen
eration

:
R

E
T

R
IE

V
E

.

66

3.2.4 Query History with check-compliance

This project supports query histories. The history is a record of every query that

a user has made, that can be used when checking for compliance with a query. In

fact, exclusion is the only policy for which it makes sense to use the query history;

moreover, exclusion should always use the query history. It is important to note that

the query history is not always helpful. Restriction never needs it, since single queries

simply fail. Inclusion does not need it either, since one query must always contain all

of the terms. Chaining should leave history disabled, since having used a condition in

the past doesn’t guarantee that the current query is compliant. Default deny never

needs it, since its behavior is so similar to restriction.

We implement query history as follows.

1. User calls “check-compliance POLICY NEW-QUERY QUERY-DESC” wrapper

script. POLICY is an AIR policy; NEW-QUERY is a query in n3, perhaps the

output of the sparql2n3 script, and QUERY-DESC is a file like query-req.n3

that defines the location of the query and history files.

2. Wrapper script appends NEW-QUERY to the history file in QUERY-DESC,

say, history.n3. This accomplishes three things:

• we only need to look at QUERY-HISTORY when reasoning, making it

much easier to automatically generate policies that only grow linearly with

the number of terms.

• AIR will explicitly know which query is the current (new) query.

• This guarantees that the QUERY-HISTORY is never empty, eliminating

a tricky edge case.

3. Wrapper script writes NEW-QUERY to a file, say, query.n3.

4. Wrapper script calls policyrunner.py, and returns the output of policyrunner.py

for viewing.

5. Optional. If policy is non compliant, we can remove it from the history file.

67

This approach is sufficient, and preserves correct AIR semantics of the query and

the history.

3.2.5 Policy Generation User Interface

The template policies defined above allow a user to easily generate policies. In order

to do so, a user interacts with the policy generator. Depending on the policy, a user

inputs variables to catch, whether to act on a USE or a RETRIEVE, a policy name,

a policy description, and if necessary, whether or not the query ought to be history

enable.

3.2.6 Compliance Testing and Browser Presentation in Tab-

ulator

Tabulator is a Firefox browser plugin that enhances Semantic Web data. In this

project, it performs two functions. One, it organizes the display of a policy and the of

the policy runner, in a form that is readable hy a human. Figure 3-4 demonstrates this

functionality. Tabulator also makes it easier for a user to understand the reasoning

generated, as figure 3-5 demonstrates.

The majority of the features discussed in this section are the work of Oshani

Seneviratne, as it falls under the umbrella of her ongoing Tabulator work. Screenshots

of the Tabulator UI are in figures 3-4 and 3-5.

3.2.7 Implementation Note

With so many tools written in different languages and offering very specialized func-

tionalities, it was necessary to write some simple tools to tie them all together. The

scripts provide additional functionality, such as query conversion from SPARQL to

N3, query history functionality, and template-based policy generation. Various scripts

power the translator, the compliance checker, the policy generator, and user-facing

Web pages. We discuss the functionality and design choices of those wrappers here;

their full source is in the appendix.

68

Figure 3-3: A screenshot of the policy generator, courtest of Yotam Aron.

69

Figure 3-4: Tabulator browser presentation of the MIT Prox Card policy.

70

Figure 3-5: Tabulator justification user interface.

71

3.3 Summary

This chapter explained the functionality of the system. It can convert SPARQL

queries to N3. It defines a set of primitive policy types. It allows a user to easily

create queries, possibly using information about an existing database. It can enable

logging of queries. It allows a user to check a query against a policy for compliance.

Finally, it allows a user to understand the compliance explanation generated by a

policy runner. In sum, this is a complete, end to end system for policy assurance,

that is ready to be integrated into an RDBMS.

All of the code in this section and the appendix are available in the MIT CSAIL

Decentralized Information Group’s code repository. Please contact a member of DIG

for access.

72

Chapter 4

Performance

In any practical system, performance is a concern. This project focused on providing

a functional implementation of a policy assurance system, and achieved that goal.

In terms of performance, the only optimization we performed was to ensure that

the query history grows linearly with the number of queries, and that policies grow

linearly with the number of items that they check.

It is relatively easy to write policies that grow faster than would be feasible to

implement. For example, one of the primitives that we originally sought to implement

was a MAX(m, n) rule, meaning, “given n fields, the user may only see up to m of

them.” This policy is trivial in the case of MAX(n − 1, n), in that the only way

to trigger it is to access all n fields. However, the current AIR language would

require that for a general implementation of MAX(m, n), we check every possible

combination. This is due to the fact that AIR is a production rule system and

does not maintain any state. Thus, a straightforward rule like MAX(m, n) grows

exponentially with (m− n).

With the help of Yotam Aron, we ran a series of tests using the history policy and

the AIR reasoner. The time values listed are the times given by the AIR reasoner

itself; there may be more accurate ways of measuring run time. We have found that

the way we write queries will influence the running time of our checks. The AIR

reasoner abhors complexity, so any attempt to limit the patterns that it checks will

help it to run faster. The reasoner runs faster with a smaller history file. We can

73

Items in Query History Reasoning After Loading Actual Reasoning
0 1.43096 1.094741 1.0751231
1 1.52762 1.32497 1.307404
2 1.7949221 1.601938 1.584473133
3 2.3070598 2.0158172 1.99806
4 2.728109121 2.513138056 2.495877981
5 3.490919828 3.255658865 3.238258839
6 4.528033018 4.235877991 4.218565941
7 5.564540863 5.312869072 5.295244932
8 7.044108152 6.777283192 6.759871006
9 8.317480087 8.051841974 8.028425932
10 10.18744802 9.915023088 9.896337986
11 12.22676992 11.94390798 11.925632
12 15.13193297 14.83994699 14.82177997
13 17.82276082 17.52010894 17.502671
14 21.40320492 21.10541201 21.087852
15 24.56065702 24.24677181 24.22919488
16 29.64700389 29.2435019 29.17709184
17 33.9228971 33.52368808 33.4938252
18 44.79428411 44.41020393 44.35875702
19 50.51201296 50.00673199 49.98922586

Table 4.1: Running time, in seconds, of unoptimized queries.

tailor our policies to shrink the size of air:pattern fields at the expense of creating

more rules.

Yotam ran one test suite running Ubuntu on VMWare. Resources allocated: 512

MB memory, 12GB hard disk space. The results are in table 4.1.

Yotam then ran one additional test suite running Ubuntu on VMWare. Resources

allocated: 768 MB memory, 12GB hard disk space. Despite the difference in memory

allocation, this shows a good trend, with better scaling for a large history. The results

are in table 4.2.

We can clearly see exponential growth toward the right hand side of these figures.

At present, this is the greatest impediment to scaling. Future changes or optimizations

to the reasoner could help this run faster.

In practice, our finds show that it would be difficult for a policy to perform any

matching against more than about 100 terms at a time. Any policy that does not

support query history will likely begin to have difficulty with a perticularly complex

74

Figure 4-1: Unoptimized policy run time from table 4.1.

Items in Query History Reasoning After Loading Actual Reasoning
0 1.548950911 1.343198061 1.324027061
1 1.335716963 1.097095966 1.078705072
2 1.426616192 1.18595314 1.159878016
3 1.465291023 1.198924065 1.178475857
4 1.604300976 1.294827938 1.275640965
5 1.621567011 1.348763943 1.330348969
10 2.188154936 1.863446951 1.843798876
15 2.896314144 2.549362183 2.529920101
20 3.677877903 3.288823843 3.269448996
25 4.998191118 4.573461056 4.555090189
30 6.7367239 6.265938997 6.247066021
40 12.97512007 12.29570103 12.26716304
50 21.24516296 20.6023891 20.57518101
60 31.52937508 30.80437517 30.78589511
70 47.03233194 46.23697996 46.211133
80 63.81845903 62.74732184 62.72839189
90 93.3954649 92.36639786 92.34837484
100 117.659286 116.265708 116.2480021
200 864.6837819 862.648648 862.6293769

Table 4.2: Running time, in seconds, of optimized queries.

75

Figure 4-2: Unoptimized policy run time from table 4.2. Note log scale on the X axis.

query that accesses on the order of 100 different variables. A policy that supports a

query history will have difficulty if there are on the order of 100 queries in said history.

A more robust machine might bump these figures by an order of magnitude, but these

seem to be the limitations of our system with hardware available today. Thus, it is

likely that an enterprise environment looking to implement this software will hit its

performance limitations relatively quickly, without additional, out-of-system means

in place to mitigate its limitations.

76

Chapter 5

Related and Prior Work

This chapter presents some of the prior methodologies in database security, as well as

other uses of Semantic Web technology in this field. There is some overlap between

this and preceding chapters.

5.1 Policy Awareness

The Information Accountability paper [10] describes the arenas in which policy-aware

systems are if interest. Among these are privacy, copyright, surveillance, and data

mining. The paper argues that if we can trace who uses data and how they use it, if

we have a way of finding accountability, we can begin to move toward policies that are

between full disclosure and full control. The paper offers scenarios of how information

aware systems would be useful in everyday life.

REIN [14] (Rei and N3, named after the Rei policy specification language and the

Notation 3 language) describes a system offering “policy management”. The system

is policy-language agnostic, and operates in an independent environment, offering a

yes/no opinion of policy compliance to an existing system. The REIN paper defines

three possible operating modes. In the server-side rules operating mode, the analogy

of choice is an application for a library card. The user does not know the rules,

but supplies the information requested on the form to the library for processing.

In the client-side rules mode, the onus of rule checking is on the user. The hybrid

77

mode offers a way of sharing this responsibility. At present, REIN is implemented in

Python, using the N3 policy language and the CWM reasoner.

There is prior work demonstrating the use of a policy-aware system for checking

license information. [15] [16] In this case, the system uses Creative Commons license

policies to check for compliance with the content creator’s sharing preferences. This

system is a way of “keeping honest people honest.” The system, as implemented,

converts meta data on an image file to an AIR policy, and checks usage patterns

against a set of rules that parallel the Creative Commons license policies. If, for

example, an image from the Flickr Web site is used on someones personal page,

in violation of the content creator’s wishes as expressed in their choice of Creative

Commons licensing, this tool will detect a conflict.

5.2 Methodologies of Access Control

It is instructive to look at the approaches systems designers take in designing tradi-

tional access control systems. Systems designers tend to have a different mind set

when approaching security problems than Web designers: systems designers tend to

favor closed systems, whereas Web designers tend to favor open systems. Existing

relational database systems extend on these technologies in their implementation of

access control.

5.2.1 Mandatory and Discretionary Access Control

The traditional models of access control, circa the mid 1980s, consist of mandatory

access control, or MAC, and discretionary access control, or DAC. The origins of MAC

lie in secure military systems, as a way to enforce permissions on proprietary, secured,

confidential data. [7] In an MAC system, the only way to gain access to data is to

expressly have an outside authority grant access. There is absolutely no provision for

an end user to alter permissions on data. The primitives for enforcing access control

extend deep into the design of the operating system. MAC systems explicitly define

rings of access. Some secure Unix operating systems, including SELinux, utilize MAC

78

design principles.

Discretionary access control is a design principle that allows a user to show that

they have the credentials to access data. [7]Users have the capability of modifying

their own permissions, or the permissions of others. A widespread example of a

DAC system is that of Unix style permissions. On Unix systems, everything, from

devices to network sockets to data on a disk, is represented as a file. Every file has

three sets of permissions: those for the owning user, for the owning group, and for

everyone else. Each of these sets may be granted (or denied) permissions to read,

write, and/or execute a file. The operating system checks the user’s credentials and

the file’s permissions before enabling an operation. Access Control Lists (ACLs) are

another example of a DAC system. There is prior work investigating the use of DAC

in object-oriented databases. [6] Such a security model works well for general purpose

computing, but not in all scenarios.

The excessive rigors in the implementation of a MAC system, and the inadequacy

of a DAC system, have led systems researchers to newer design philosophies that

allow finer granularity in security settings.

5.2.2 Role Based Access Control

In the early 1990s, systems researchers began to find practical limitations in the

expressive power of the discretionary access control model. Researchers presented role

based access control as a more secure, easy to implement alternative to discretionary

access control. [8] Role based access control is a form of mandatory access control, in

that users obtain their permissions from an outside authority. The primary difference

is in the structure of permissions. In role based access control, a user can be assigned

to one (or more, in some implementations) “roles”. As an example, a user in a

large company might wear several hats throughout their time in the company, from

“human resources associate” to “financial associate” to “systems analyst”. Each of

these roles requires a different set of permissions. The formal description of role

based access control, demonstrated in the paper, shows the power and flexibility of

assigning roles rather than individual permissions. It is particularly well suited to

79

assigning permissions where a high user turnover rate is present.

5.2.3 Rule- and Policy-Based Access Control

Rule based access control is an extension and a generalization of role based access

control. Instead of simple roles, we can use rules and logic to derive whether or not a

particular agent should have access to a particular resource. As an example, consider

a student trying to access a secured Web page. The student may have credentials

saying, “I am a graduate student”, “my adviser is Professor Smith”, and “I am a

member of Research Group X”. The page may have a set of rules defining access: it

may be restricted to individuals who are members of certain research groups, and also

graduate students. Different versions of the page may exist based on the credentials

used. REIN [14] and SWRL [9] provide sample implementations of policy based

access control. This thesis mimics the RBAC approach, using a similar methodology

to define and process rules.

5.3 Prior Work in Relational Databases

This project seeks to address a particular shortcoming in database systems at present.

In order to enforce access control policies, the database must be able to see the queries

that a user is making against the database. This poses a problem when the queries

themselves may reveal sensitive data. Access control lists are insufficient in this

regard, whereas misuse and intrusion detection efforts are more closely related with

our work.

5.3.1 Access Control Lists

Modern relational database management systems utilize some form of discretionary

or role-based access control to regulate access to tables, using some form of access

control list. The database administrator may restrict database access to particular

rows or columns in particular tables, may grant or deny read and write permissions,

80

and may limit the user to executing particular queries. [5] In effect, all of these systems

limit the user to seeing a particular subset of the data in the database.

It follows that the structure of the access control policy must closely follow the

structure of the data itself. The structure of the security policy may divulge secure

information, and may not be tolerant of changes to the underlying structure of the

database.

5.3.2 Access Control Features In A Modern RDBMS

Modern RDBMS packages, such as Oracle, offer a wide variety of access control

features. We can roughly group them into five categories. [17] [18] [19]

• Privileges

• Views

• Stored Procedures

• Roles

• Virtual Private Databases

Privileges explicitly grant access to perform an action on a particular database

object. A database administrator, or a user with appropriate privileges, can grant

or revoke privileges. A view is a dynamic table, the output of a particular query

against the database. A stored procedure is a particular command, like a user defined

function, provided for database access. A role, as described in the preceeding section

on role-based access control, is a type of meta-user that helps congregate database

permissions. A virtual private database is a form of information hiding, partitioning

the database such that a user only sees certain data.

These systems are able to specify access rights for users and groups on databases,

and work well enough in the majority of usage cases. However, this design is not with-

out its limitations. The access policies must closely follow the structure of the data,

in many cases involving the database administrator to know a great deal about the

81

structure of the tables. Changes to the layout of data will break previously defined

policies. Privileges can be granted or revoked in a conflicting fashion, often making

it difficult to determine correct access. Views and virtual private databases may be

overly restricting, preventing honest individuals from carrying out their responsibili-

ties. Our work seeks to address the numerous limitations with systems of this design

by introducing a more flexible, more abstract means for defining permissions.

5.3.3 Misuse and Intrusion Detection

There is prior work in the field of intrusion detection systems in databases. Intru-

sion detection researchers argue that, though an outsider threat is very real, current

databases do little to guard against violations of policy conducted by a trusted insider

with database access. Detection of Misuse in Database Systems (DEMIDS) [20] was

one of the first systems to detect potential misuse in a database system. By moni-

toring queries, using audit logs, and determining a frequent item set, the DEMIDS

system is able to guess whether or not a particular access by a particular user is likely

to be permitted. This approach suffers from a granularity issue: with too high or too

low granularity, it is likely that the system will see a high number of false positive

policy violations, or respectively, a high number of false negatives.

Later systems expand on some of the DEMIDS ideas, adding better learning or

classification techniques. Cathey et. al. [21] developed a system that uses a combi-

nation of user query profile learning, abnormal query behavior detection, clustering

documents, clustering query results, and relevance feedback to better understand

how particular users and groups access a database. Over time, Cathey’s system will

“learn” common access patterns. Kamra et. al. [22] extend this theme further, re-

quiring the use of role-based access control, and using a naive Bayes classifier to learn

standard access patterns. Their approach argues that, by only considering roles in-

stead of individual users or tables, the granularity is correct. Kamra’s paper also

argues against a formal definition of intrusion detection, saying that the intrusion de-

tection application is much more purpose-built, and therefore less suited to a formal

approach. The aforementioned techniques would be helpful in the initial instrumen-

82

tation of rule sets, by finding common ways that users access data.

5.4 Alteration of Data

An orthogonal approach to security of certain kinds of sensitive data is the alteration

of the data itself. If we restrict the utility of the data through alteration, we can, in

theory, limit the usefulness of the data, its sensitivity, and its potential for damage.

The classic example of this approach is the use of a heavy black marker to manually

censor sensitive government documents prior to public release. There has been some

research into formalizing and automating this process.

Sweeney has published a great deal of research on this particular topic. k-

anonymity [23] [24] offers a formal approach to the de-identification process. A data

set that offers k-anonymity for some k is constructed such that, for every attribute

(column), there are at least k occurrences of that attribute (rows). Phrased differently,

a data set of census data would be anonymous for k = 2 if there were at least two

occurrences of each name, address, age, and so on. By setting a value of k, dependent

on the application, we can guarantee difficulty in re-creating and de-identifying the

data set. Datafly [25] is a system that can de-identify data automatically, removing

singletons, changing social security numbers (SSNs) and dates of birth, changing ZIP

codes, and the like.

De-identification and privacy problems are nothing new to the biomedical in-

formatics world. Access to, and use of, medical data faces heavy regulation, most

prominently from the Health Insurance Portability and Accountability Act (HIPAA)

of 1996. The Multi-parameter Intelligent Monitoring for Intensive Care database, or

MIMIC II (http://mimic.mit.edu/) is a database, provided by an MIT research

group, for research purposes. The MIMIC group has published many papers dis-

cussing and evaluating different de-identification algorithms.

With access to the database, our system could potentially anonymize data using

any of a number of well known techniques. This would allow us to keep original data,

and only serve data that is as specific as it needs to be for a particular application.

83

http://mimic.mit.edu/

84

Chapter 6

Future Directions

This work is a solid beginning for future work in Semantic Web based policy assurance.

It is also just that: a beginning. There are some important pieces of this project that

need to be addressed, and some interesting applications that are just beginning to

scratch the surface of what is possible with our reasoner. In this chapter, we discuss

future work related to this project in this chapter. This is just a sample of the

directions in which this work may grow.

6.1 SPARQL Endpoint Integration

The policy assurance implementation in this paper serves as a standalone component.

As we mentioned in the earlier Policy Assurance section, an important future step

is to integrate this work with a SPARQL endpoint to demonstrate compliance with

incoming queries in real time. To do this, the endpoint would need to be able to look

at the AIR reasoner’s output, and pull compliance information from that output.

A particular endpoint could perform verification using a local or online reasoner,

depending on the application specific needs.

85

6.2 SQL Support

The majority of databases in production use the SQL query language. In order to

be compatible with most existing database implementations, our project needs to be

able to handle SQL queries. There are several pieces that need to come together for

SQL to be a supported language. First, we would need to find a way to translate SQL

queries to N3. The SPASQL project (cite) provides for mapping SPARQL queries to

SQL. This translation needs more research attention to determine the challenges for

converting SQL, or at least a portion thereof to SPARQL. (A conversation with Eric

Prud’hommeaux suggests that a one-pass approach may be insufficient, and that this

could be a Ph.D. thesis topic.) Secondly, we need a way of describing the fields in a

SQL table using URIs.

6.3 Completing and Porting the N3 Translator

The current SPARQL to N3 translation does not support GRAPH, nor does it com-

pletely support the built in functions of SPARQL, or nested queries. Furthermore,

the current one-pass approach Instead of a mere re-serialization of the SPARQL query

in one pass, it may be necessary to perform additional processing. With more mod-

ification to the swobjects code base, multiple pass translation is possible, enabling a

much richer translation.

The swobjects approach to query translation was convenient, since the author

had easy access to the main developer of swobjects, but it may not be ideal. The

majority of the code used in this project, including the reasoner and various scripts,

are in Python. The fyzz project [26] implements a SPARQL lexer and parser in

Python. This recent project may offer better integration into the rest of the project,

allowing a unified query toolkit.

86

6.4 Policy Generation from Natural Language

Some of Oshani Seneviratne’s previous work deals with parsing natural language. It

should be possible to parse natural language, or at least a constrained version thereof,

in such a way that we could automatically generate policies from that. Using natural

language as input would be a great benefit to the usability of this system.

6.5 Semantic Policies

Our collaborators at Lincoln Lab proposed implementing policies which perform rea-

soning in order to deduce a conclusion. Instead of directly specifying, “do not allow

address searches where CITY equals Boston,” we can more vaguely specify “do not

allow searches in Boston.” With an appropriate set of assumptions and data, the rea-

soner would be able to piece together that Boston contains streets, neighborhoods,

ZIP codes, etc. Yotam Aron’s work is exploring these possibilities directly, by en-

coding knowledge bases for the reasoner. A long term goal would be to adapt the

reasoner to use existing ontologies in drawing conclusions.

6.6 Database Description

To make things simpler for a user, this project should support loading a database

ontology to automatically populate the fields in the policy generation user interface.

This reduces duplicated effort, as well as reducing the possibility of simple typograph-

ical errors. The database ontology is an N3 description of the attributes in a database,

with some pre-defined filters.

87

88

Chapter 7

Concluding Thoughts

The problem of policy assurance is one of transparency, accountability, and correct-

ness. The classic approach to sensitive security issues has always been a very black-

and-white “all or none”: either data is visible, or it is restricted. In a modern and

inter-disciplinary world, adding more shades of gray to the possibilities for security

is increasingly important. The security approach that we describe in this thesis does

not simply ask who a user is, but also what they are trying to see. At present, SQL

database security operates on the level of a table. At best, we can grant or deny

access to particular rows and columns of a table, but the limitation is still a table: a

flat, two-dimensional structure.

The Semantic Web works with data that comes, not in table form, but in graph

form. The Semantic Web is built on top of the Web, with its myriad of interconnected

links. By using Semantic Web technologies, we can begin to define policies that act

not simply on tables, but on a more complex, more abstract data set. Furthermore,

we can define policies that are as fine-grained as individual terms in a query.

By looking at queries, this project takes a different approach than other database

security initiatives. This system can operate completely externally to a database, or

function as an addition. It can protect sensitive data contained in user queries by de-

sign. It provides a human- and machine-readable “paper trail” that gives more explicit

information about policies to users and auditors, while allowing enough freedom for

administrators to easily create interesting policies. This design gives a performance

89

benefit: by looking at queries and not results, the system can save a heavily loaded

database server from executing queries that are not compliant, and would be a use of

valuable cycles.

Our approach is particularly valuable in multi-tiered environments containing

highly sensitive data, where different parties have different access privileges and dif-

ferent access needs. This approach minimizes the amount of information in a log, to

the information that is strictly needed to verify a particular assertion. This improves

usability and reduces the risk of data leakage, by showing an auditor everything they

need to see, and nothing they don’t. This is a boon, as it allows even more levels of

access, potentially enabling new workflows.

The specific approach of this project was to check query patterns. We converted

SPARQL queries to the N3 language, and provided a tool for doing so. We wrote

policies in the AIR language, and provided tools to help an administrator write their

own policies according to our boilerplate. We provided a way to check the queries

against the policies, using the Firefox Web browser. The system achieves the goal of

usability and scalability.

Of course, this system is not without its limitations. The current implementation

scales reasonably well for hundreds or thousands of entities, but not for millions of

entities. Some important future work will add needed performance and usability

improvements.

It is our hope that this system will eventually see utilization in production, and

will grow over time. The author can only begin to imagine the possibilities for this

system.

“Share and enjoy.”

–Douglas Adams, The Hitchhiker’s Guide to the Galaxy

90

Appendix A

Background Technologies

Data on the World Wide Web is readily available to human agents, but notoriously

for machines to interpret. The Semantic Web is an ongoing initiative to develop Web-

based data systems that are easily readable by both humans and machines. Common

tactics for achieving this goal include tagging data, linking data, and writing software

to draw conclusions on data.

This project draws heavily on Semantic Web technologies. In this chapter, I

discuss the Semantic Web initiative as well as several technologies that were used in

this project. This overview is far from exhaustive, as there are a large number of

technologies that comprise the Semantic Web vision; rather, this summary is here to

explain the suitability of the technologies chosen, as well as to provide an introduction

to these technologies for the reader.

A.1 Semantic Web Overview

A.1.1 The Vision

“The Semantic Web is not a separate Web but an extension of the current

one, in which information is given well-defined meaning, better enabling

computers and people to work in cooperation.”

–Tim Berners-Lee. From [27]

91

Figure A-1: Semantic Web “layer cake,” showing how components relate [2].

In broad terms, the Semantic Web is a set of extensions to the current World Wide

Web designed to make it easier for automated systems to interact data, and thus, to

make it easier for humans to interact with data. The goal is to provide tools that

make it possible to improve data handling in a large, heterogeneous, decentralized

environment such as the Web. The current strategy is to provide tools that allow us

to describe data, and tools that perform reasoning over data.

The Semantic Web development effort has directly led to a number of technologies

[28] that enable data markup, ontology definition, and other useful tasks. These tools

extend existing systems (such as the HTML language), and serve as adaptations of

other technologies (such as XML).

Developments in the Semantic Web effort have produced a way of naming abstract

concepts, a way of describing concepts using other concepts or literals, and a way of

finding descriptions and matching patterns. More importantly, these technologies

make it much easier for both human and machine agents to read, reason on, and

operate upon data. In a world that is ever more interdisciplinary, being able to

connect disparate data is a boon.

Semantic Web technologies are moving out of the realm of research and into

92

commercial production. Adobe offers tools to embed RDF metadata in a number

of formats [29]. The Creative Commons license [30] embeds RDF metadata that

helps determine usage rights for media. Major Web search engines as of this mid-2009

writing, such as Google, bing, and Wolfram Alpha, employ Semantic Web technologies

to help improve the quality of search results. RDF triples are becoming popular in

the biomedical and intelligence communities, where collaboration between disciplines

is crucial to success.

A.1.2 The URI

The Uniform Resource Identifier, or URI, is the unique technology that enables nam-

ing on the Web [31]. A URI may serve as a pointer to a resource, be it a Web page,

an e-mail address, the location of a music file, the name of a service. A URI may

point to something that does not exist. Regardless of its destination, a URI serves as

a unique identifier in the Web world.

A URI enables us to refer to items in a namespace as well. The idea of “URI as

a name” is a crucial cornerstone of the Semantic Web. For example, let us consider

the following URI:

http://www.example.org/

This URI points to a resource that might be located there. Now, let’s create a

simple ontology for describing things that I might find at a local grocery store:

http://www.example.org/grocery#banana

http://www.example.org/grocery#apple

http://www.example.org/grocery#spaghetti

Each of these URIs contains value itself. When I resolve the URI, and fetch

the resource to which it points, I may find a textual description of a banana, or

a photograph of an apple, or nutritional information about spaghetti. I may find

nothing at all.

93

I can capture the design pattern of common prefixes as a name space. Instead of

repeating ourselves, let us define the “grocery” namespace as the set of URIs that

begin with “http://www.example.org/grocery”.

A.1.3 HTML, the HyperText Markup Language, and XML,

the eXtensible Markup Language

The Hypertext Markup Language (HTML) serves as the backbone language of the

World Wide Web. As a markup language, it provides a standardized way of creating

Web documents that users can read with any of a number of programs, including

Web browsers. HTML’s characteristic property is its ability to encapsulate data with

a pre-defined set of tags, easily recognizable with angle brackets. A common tag may

look like this:

 Example Home Page

The Extensible Markup Language, or XML, enables an unlimited amount of ad-

ditional expressivity in the form of arbitrary user-created tags. I can nest XML tags

within one another, allowing us to represent arbitrary tree structures in the language.

As an example, I can create a grocery list, building upon the previous example.

<grocerylist>

<item moreinfo="http://www.example.org/grocery#banana" quantity="5">

Bananas</item>

<item moreinfo="http://www.example.org/grocery#apple" quantity="2">

Apples</item>

</grocerylist>

The expressive power of XML is also its weakness: without any standardization, I

would have an infinite number of meaningless and unrelated descriptive languages,

defeating our goal of human and machine interoperability. An XML schema gives us

a way to standardize a description, but even this is not sufficiently robust for machine

readability.

94

Figure A-2: The RDF logo. Its structure suggests the triple pattern. From [3].

Free text Triple pattern(s)
The population of
Boston is one million.

{ "Boston", "population", "1E6" }

The Red Line stops at
Park Street.

{ "Red Line", "station", "Park Street" }

The color of the sky is
blue.

{ "Sky", "color", "blue" }

Table A.1: Expressing natural language as triples.

A.2 RDF

The Resource Description Framework, or RDF, provides an infrastructure for creating

metadata using the ides of the URI [3] [32]. RDF builds on XML technologies to

provide a framework for using XML to describe data.

At its core, RDF is little more than a formalization of the triple pattern:

{ subject predicate object }

The triple pattern is a representation of a (noun,verb,modifier) sentence con-

struct. These three pieces of information describe relationships between objects.

Indeed, this pattern is very similar to the constructs for description available in many

spoken and written languages. As an example, I show how triple patterns might

represent the following relationships in pseudocode in table A.1.

I can chain triple patterns together to make more complex statements, as I show

in table A.2.

From this information, I could conclude that Zach lives in Illinois2. This system

of description lends itself to automated reasoning, which is precisely why it is suitable

for Semantic Web activity. I will discuss tools to perform this kind of analysis shortly.

In practice, there are two additional clarifications that allow definition of triple

patterns. First, every subject, predicate, and object must be a URI, a literal, or

95

Free text Triple pattern(s)
Jane has a pet dog
named Zach and a
house in Illinois.

{ "Jane", "pet", "Zach" }

{ "Zack", "species", "dog" }

{ "Jane", "residence", "house" }

{ "house", "location", "Illinois" }

Zach lives in the
house.

{ "Zach", "residence", "house" }

Table A.2: Expressing natural language as triples.

possibly a variable:

<http://example.com/boston> <http://example.com/population> "1,000,000"

Secondly, RDF triples must be serialized (written) in a standard format. The

two popular approaches for RDF serialization are RDF/XML and Notation 3, or N3

(cite http://www.w3.org/DesignIssues/Notation3.html). I can express this example

in RDF/XML as follows, using abbreviations for the RDF and fictitious ”geography”

namespaces for convenience. RDF/XML fulfills the need for expression of triple

pattern relationships in a standardized, royalty-free, open format.

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:geography="http://example.com/">

<rdf:Description rdf:about="http://example.com/new-york">

<geography:population>8000000</geography:population>

</rdf:Description>

</rdf:RDF>

In a more general sense, triple patterns enable the expression of nodes and edges

of a (directed) graph. Subjects and objects are nodes in the graph, and predicates

define the edges.

96

A.2.1 Notation 3

Notation 3, or N3, is able to express all of RDF/XML, with the goal of being more

human readable. For comparison, I show the same triple pattern with an N3 serial-

ization, assuming the same namespaces.

@prefix geography: <http://example.com/> .

geography:boston geography:population 1000000 .

The N3 serialization, a form of shorthand or “syntactic sugar”, is equivalent to the

RDF/XML serialization above; tools exist that will transform one into the other. The

real strength of N3 - in light of the goals of the Semantic Web - is that it is more

human readable.

Notation 3 is more expressive than pure RDF; indeed, the complete RDF 1.0

specification is a subset of N3. The language supports implication and quantifiable

variables (“for all” and “for some”). This additional expressive power enables some

interesting applications, such as reasoners, rule systems, and query processing.

A.3 OWL

RDF and the URI together can describe the properties that an object has, by using

unique names and expressing subject,predicate,object relationships. In order to have

multiple parties agree on a standard set of descriptors for objects, and encode restric-

tions such as “there is exactly one of these” or “this is a subtype of that”, another

system is necessary. The Web Ontology Language, or OWL, provides a common way

to capture these design patterns [33].

OWL offers a way to create ontologies that is more expressive than XML or

RDF. Its three dialects, OWL Lite, OWL DL, and OWL Full, offer graded levels of

expressive power. OWL allows URIs to have structure, with cardinality, equivalence,

and subtyping. OWL can connect different ontologies.

97

A.4 Tabulator

The Tabulator [34] is a Semantic Web browser. Implemented as a browser plug-in,

or possibly as a standalone application, it makes it easier for humans to view and

understand RDF data. Tabulator enables searching, outlining, and tabular display of

semantic data. It supports add-ins that enable micro-blogging, and help users under-

stand the structure of some specific RDF formats. Tabulator’s role in the Semantic

Web project is to serve as a crucial bridge to human usability.

A.5 SPARQL

RDF data defines a graph structure. This graph may be more complex than a re-

lational model, which focuses on linked tables of row/column attributes. Thus, for

reasons of performance or simplicity, it may be useful to create a new data structure

for storing triple patterns. For the purpose of this paper, it is sufficient to assume

that there exists a way to store triple patterns.

Data is meaningless unless it has context and an interested party is able to find it.

The URI and the triple pattern [35] allow data to have context, using standards and

ontologies that many parties may use. The missing piece of the puzzle is SPARQL, a

query language for RDF data and triple stores.

From the SPARQL language specification [4]:

“SPARQL can be used to express queries across diverse data sources,

whether the data is stored natively as RDF or viewed as RDF via middle-

ware. SPARQL contains capabilities for querying required and optional

graph patterns along with their conjunctions and disjunctions. SPARQL

also supports extensible value testing and constraining queries by source

RDF graph. The results of SPARQL queries can be results sets or RDF

graphs.”

Given the N3 triples in figure A-3, and the SPARQL query in figure A-4, a

SPARQL query processor might return the output in table A.3. (This example comes

98

<http://example.org/book/book1> \

<http://purl.org/dc/elements/1.1/title> "SPARQL Tutorial" .

Figure A-3: A sample RDF data set, using backslash to denote newline. From [4].

SELECT ?title

WHERE

{

<http://example.org/book/book1> \

<http://purl.org/dc/elements/1.1/title> ?title .

}

Figure A-4: A sample SPARQL query. From [4].

from the SPARQL W3C Recommendation [4].)

SPARQL’s syntax is reminiscent of SQL, and this is intentional. A SPARQL im-

plementation will find triple patterns that match the triple patterns specified in the

WHERE part of a SPARQL query, and bind and return variables in the SELECT part

of the query. In this case, the SPARQL engine will look for any objects in triple pat-

terns, such that the subject of the triple pattern is "<http://example.org/book/book1>"

and the object of the triple pattern is "<http://purl.org/dc/elements/1.1/title>".

Given only the data in figure 1, it finds exactly one triple pattern with this subject

and predicate, the triple pattern with the object “SPARQL Tutorial”.

The SPARQL language is a robust query language. In short, SPARQL is to RDF

graphs as SQL is to relational databases. The introduction of SPARQL provides

a much needed tool for querying RDF graphs, using a simple, familiar syntax. It

enables joins through multiple match patterns. It allows a user to CONSTRUCT

a new RDF graph based on the results of the query, to FILTER data, to mark a

certain match as OPTIONAL, and to alter the results using LIMIT and OFFSET

directives. A user can ASK if any pattern matches a pattern, or have the SPARQL

engine DESCRIBE its data set. A user can even specify our own RDF graphs for a

Variable Binding
title “SPARQL Tutorial”

Table A.3: The output of a basic SPARQL query.

99

query using FROM and FROM NAMED; the SPARQL engine may or may not handle

user-specified graphs. (A more thorough discussion of the features of the SPARQL

query language follows in a later section, as part of the discussion of this project’s

query translator.)

A.6 Reasoning

The reasoning systems in this project build on some classic principles of logic and

logical programming. A brief overview of those technologies follows.

A.6.1 Forward Chaining

Forward chaining, or modus ponens, is a reasoning method by which a set of rules

are used to draw all possible conclusions about a data set. A rule typically has two

parts, a left hand side and a right hand side, an “if” clause and a “then” clause, a

condition and a consequent. This is also known as a data driven approach, since the

rules used and the outcome will vary depending on the data. Of course, the rules

determine which possible outcomes a forward chaining system may reach.

The inverse of a forward chaining system is backward chaining. In a backward

chaining system, the goal is to find data to support a conclusion. This approach is

also called a goal driven approach.

Indeed, the SPARQL language presented above uses forward reasoning to match

triple patterns. In the case of figure A-4, there must be a rule, somewhere, whose

condition is “if there is a triple pattern with this subject and this predicate”, and

whose consequent is “then output that same triple’s object”. The forward chaining

approach allows arbitrary conclusions given data and rules; given an unlimited data

set, rules could run for a long time, possibly forever.

100

A.6.2 Production Rule Systems

A production rule system is a computer program that implements a forward chaining

reasoner with a set of rules over a data set. The production rules also feature a condi-

tion and a consequent. In addition to forming conclusions, the rules in a production

system may have side effects, triggering outside events or causing side effects within

the system.

A “naive” production rule system will simply apply every rule, repeatedly, until

it finds a match. Some optimizations will change the order of the rules, or perhaps

give certain rules priority.

A.6.3 The Rete Algorithm

Rete (pronounced REE-tee) is the name of a particular algorithm used for pattern

matching in production rule systems [36]. Developed in the late 1970s by Charles

Forgy, Rete offers substantial performance improvements to previous production rule

systems by using a tree-based approach. The Rete algorithm makes use of some

moderately advanced graph theory in its implementation. for our purposes, what is

important is that the algorithm scales well.

A.6.4 Semantic Web Application Platform

The Semantic Web Application Platform is the name of a number of technologies

developed for the purpose of furthering Semantic Web research [37]. The platform

is working to create tools and utilities to enable conversion, extraction, and use of

Semantic Web data.

A.6.5 cwm and cwmrete

Cwm is a software suite written to facilitate Semantic Web work [38]. From the Cwm

homepage:

“Cwm (pronounced coom) is a general-purpose data processor for the se-

101

mantic web, somewhat like sed, awk, etc. for text files or XSLT for XML.

It is a forward chaining reasoner which can be used for querying, check-

ing, transforming and filtering information. Its core language is RDF,

extended to include rules, and it uses RDF/XML or RDF/N3 serializa-

tions as required.”

The cwm reasoner is the backbone of many Semantic Web projects, including this

one. Cwmrete, an implementation of the Rete algorithm in cwm, allows advanced

forward chaining, as required by the AIR language.

A.7 AIR

A.7.1 Introduction

The AIR policy language, for “Accountability in RDF” or “AMORD [39] in RDF,”

is a specification for writing policies and making assertions. The language makes use

of Notation 3 (N3), an RDF syntax, for expressing policies. These policies consist of

individual rules and patterns that, if matched, will trigger other rules and assertions.

AIR implements a system of production rules using forward chaining reasoning.

The current implementation of the AIR reasoner draws on pre-existing technolo-

gies. The reasoner presently incorporates a truth maintenance system (TMS). The

AIR reasoner also incorporates work from the Rein project [14], which specified poli-

cies written in N3, and reasoning using the cwm engine. Rein also introduced dis-

tributed policies, and reasoning over such policies in the Semantic Web.

In its current form, the AIR reasoner consists of several components. Rules files,

written in N3, specify policies, each with at least one rules, which can make assertions.

Log files, also in the N3 format, contain facts upon which I might apply AIR rules.

AIR permits multiple log files. Finally, a reasoner, or “policy runner”, accepts a

rule file and one or more log files as input. The reasoner will continue to apply the

rules using either an open-world or a closed-world assumption until there is nothing

more to deduce. For the purpose of this project, the reasoner uses a closed-world

102

Figure A-5: Diagram of the AIR policy language ontology.

assumption so that all assertions depend solely on rules and policies I provide. The

reasoner’s output, in the N3 format, details the reasoning it performed, including a

nested list of the assertions it made.

The AIR ontology serves to define the AIR language, in showing which classes are

subclasses of other classes and demonstrating how rules inherit from containers and

actions. A diagram of the ontology appears in figure A-5.

A.7.2 A Brief AIR Tutorial

In this section, I demonstrate the features of a relatively simple AIR policy: a slightly

amended version of the policy in the MIT Prox Card Scenario [40]. The sample policy

is complete, and exemplifies many of the features of the AIR language. The online

AIR policy tutorial is a helpful reference here [41]. The full text of this example policy

is in the appendix. The main body of this paper will contain some more advanced

policies.

103

It bears mentioning that the policies discussed herein are in “version 1” of the AIR

language. All of the policies presented later are in “version 1” as well. An updated

syntax, “version 2”, is current and was introduced on 13 April 2009. I will quickly

demonstrate the differences in versions and rationale for the change here, and discuss

the need to move to the new version in the Future Work section.

First, any AIR file should declare the air namespace, as AIR policies rely upon

the ontology that this namespace defines. The trailing dot is mandatory.

@prefix air: <http://dig.csail.mit.edu/TAMI/2007/amord/air#> .

An individual policy may declare any namespace as its local namespace, and also

specify any number of additional namespaces.

@prefix : <http://dig.csail.mit.edu/TAMI/2007/s0/mit-policy#> .

(additional namespaces)

The policy file must declare the variables it will use using an @forAll or @for-

Some declaration toward the beginning. This is mandatory, as the AIR file has N3

semantics!

@forAll :U, :D, :P1.

An AIR policy file may contain multiple policies; our example only contains policy.

I recall that N3 has some reserved keywords, such as a and is a, which refer to

concepts in the OWL ontology. For example, a is shorthand for owl:sameAs. (cite

http://www.w3.org/TR/owl-ref/#sameAs-def) A policy may call one or more rules

in an attempt to forward chain and make an assertion.

:MITProxCardPolicy a air:Policy;

air:rule :MITRule1.

Note that this is equivalent to:

http://dig.csail.mit.edu/TAMI/2007/s0/mit-policy#:MITProxCardPolicy \

owl:sameAs http://dig.csail.mit.edu/TAMI/2007/amord/air#:Policy;

http://dig.csail.mit.edu/TAMI/2007/s0/mit-policy#:MITProxCardPolicy \

air:rule http://dig.csail.mit.edu/TAMI/2007/s0/mit-policy#:MITRule1.

104

A policy will point to one or more rules. A rule can contain:

• a description, which is a free text descriptor of the rule and may contain variable

references;

• a pattern, which is a set of conditions that must all be true for a rule to activate;

• a label, which is a name for the rule;

• an assert, which is the action the reasoner takes if the pattern is matched;

• an alt, which is the action the reasoner will take if the pattern is not matched.

The first rule merits further investigation:

:MITRule1 a air:BeliefRule;

air:label "MIT prox-card policy";

air:pattern {

:U a air:UseEvent;

air:data :D;

air:purpose :P1.

:D a mit:ProxCardEvent.

};

air:rule :MITRule2.

This code captures the following meaning: “Suppose I can find something, call it

:U, that is an air:UseEvent, with an air:Data of something else that I can call :D,

and an air:purpose of yet another thing that I can call :P1. If that :D turns out to

be an mit:ProxCardEvent, then activate :MITRule2.”

Let’s take a look at the following two rules.

:MITRule2 a air:BeliefRule;

air:pattern { :P1 :sameAs pur:criminal-law-enforcement. };

air:description (:P1 " is same as a criminal activity");

air:assert { :U air:compliant-with :MITProxCardPolicy. };

105

air:alt [air:rule :MITRule3].

:MITRule3 a air:BeliefRule;

air:pattern {};

air:description (:P1 " is different from a criminal activity");

air:assert { :U air:non-compliant-with :MITProxCardPolicy }.

This pair of rules says, “If that purpose :P1 I found is, in fact, the same as

pur:criminal-law-enforcement, then this :U is compliant. Otherwise, this :U is

not compliant!”

The MIT Prox Card Policy, though relatively simple, serves to encode a real-world

policy in an electronic format that a machine can readily use. There is some effort to

further this work, to encode more real world laws and policies; it is the focus of TAMI,

the Transparent Accountable Datamining Initiative (cite tami), and other works (cite

any that you find).

A.7.3 Changes to the AIR language

On 15 April 2009, Ian Jacobi announced the following changes to the AIR language

specification, bringing it to version 2. As all of the policies in this thesis use version

1 of the AIR language specification, porting them to version 2 is an important future

work. The changes are as follows.

1. The air:pattern and air:alt properties have been effectively renamed to

air:if and —air:else—. So:

[air:pattern :A ;

air:alt :B] .

Would become:

[air:if :A ;

air:else :B] .

106

2. The air:assert property now behaves like the air:assertion property, while

air:assertion (and the old functionality of air:assert) is no longer sup-

ported. Thus:

[air:assert :A ;

air:assertion :B] .

Would become:

[air:assert [air:statement :A] ;

air:assert :B] .

3. The air:rule and air:assert properties are no longer permitted to accept

air:Abstract-rule as a subject. They now take air:Abstract-action (like

the bnode object of the old air:alt). To allow for the old actions, a new

property has been added, air:then, that behaves like air:alt, except that

the actions trigger on match. An air:Abstract-action may have only one of

air:rule, air:goal-rule, air:assert, air:assert-goal.

In summary, then:

[air:pattern :A ;

air:rule :B ;

air:goal-rule :C ;

air:assert :D ;

air:assert-goal :E ;

air:assertion :F ;

air:alt :AnAlt] .

:AnAlt [air:rule :G ;

air:assert :H] .

Would now become:

107

[air:if :A ;

air:then [air:rule :B] ,

[air:goal-rule :C] ,

[air:assert [air:statement :D]] ,

[air:assert-goal [air:statement :E]] ,

[air:assert :F] ;

Note that the air:alt no longer can hold both air:rule :G

and air:assert :H.

They must be added as objects of separate air:else statements now.

air:else [air:rule :G] ,

[air:assert [air:statement :H]]] .

A.7.4 AIR Summary

The AIR language allows a user to write arbitrary policies, to draw arbitrary con-

clusions. It is a flexible, relatively easy to use and understand language. It draws

upon some technologies that are decades old to perform its reasoning. It provides an

interesting application of Semantic Web technologies and is a crucial cornerstone of

this project.

A.8 Summary

The ongoing Semantic Web initiative has grown to include a number of technologies,

such as RDF and SPARQL, for describing and manipulating data. This project makes

use of a number of technologies, most importantly SPARQL and AIR. All of these

technologies are fields of active research, and as such, subject to change in the future.

108

Appendix B

Supporting Code

B.1 MIT Prox Card Policy

1 # MIT Prox Card Policy: http ://web.mit.edu/mitcard/privacy.html
2 # We use a simplified policy: prox card data can only be used for
3 # criminal investigation.
4
5 #### Namespaces ####
6
7 # The default namespace is this document.
8 @prefix : <http :// dig.csail.mit.edu/TAMI /2007/ s0/mit -policy#> .
9

10 # "prox:" is an alias for ":" to improve printed output.
11 @prefix prox: <#> .
12
13 # AIR (AMORD in RDF) is the policy language.
14 @prefix air: <http :// dig.csail.mit.edu/TAMI /2007/ amord/air#> .
15
16 # Purposes are drawn from a predefined set.
17 @prefix pur: <http :// dig.csail.mit.edu/TAMI /2006/ s4/purposes#> .
18
19 # The "mit:" namespace defines background terms specific to MIT.
20 @prefix mit: <http :// dig.csail.mit.edu/TAMI /2007/ s0/university#> .
21
22 @prefix owl: <http :// www.w3.org /2002/07/ owl#>.
23
24 #### Policy ####
25
26 @forAll :U, :D, :P1.
27
28 :MITProxCardPolicy a air:Policy;
29 air:rule :MITRule1.
30
31 :MITRule1 a air:BeliefRule;
32 air:label "MIT prox -card policy ";

109

33 air:pattern {
34 :U a air:UseEvent;
35 air:data :D;
36 air:purpose :P1.
37 :D a mit:ProxCardEvent.
38 };
39 air:rule :MITRule2.
40
41 :MITRule2 a air:BeliefRule;
42 air:pattern { :P1 :sameAs pur:criminal -law -enforcement. };
43 air:description (:P1 " is same as a criminal activity ");
44 air:assert { :U air:compliant -with :MITProxCardPolicy. };
45 air:alt [air:rule :MITRule3].
46
47 :MITRule3 a air:BeliefRule;
48 air:pattern {};
49 air:description (:P1 " is different from a criminal activity ");
50 air:assert { :U air:non -compliant -with :MITProxCardPolicy }.
51
52 #ends

B.2 SSN Policy - Original Ontology

1 # $Date: 2009 -04 -13 18:57:50 -0400 (Mon , 13 Apr 2009) $
2 # $Revision: 25833 $
3 # $Author: jsoltren $
4
5 # SSN Policy: No-one can access SSN information from the database
6 # specifically , you cannot query for someone ’s SSN number
7 # or use it in the filter clause
8
9 @prefix air: <http :// dig.csail.mit.edu/TAMI /2007/ amord/air#> .

10 @prefix owl: <http :// www.w3.org /2002/07/ owl#>.
11 @prefix math: <http :// www.w3.org /2000/10/ swap/math#>.
12 @prefix log: <http :// www.w3.org /2000/10/ swap/log#>.
13 @prefix xsd: <http :// www.w3.org /2001/ XMLSchema#>.
14 @prefix s: <http :// dig.csail.mit.edu /2009/ IARPA -PIR/sparql#> .
15 @prefix : <http :// dig.csail.mit.edu /2009/ IARPA -PIR/ssn -policy#> .
16
17 @forAll :Q, :P, :W, :V, :T, :F, :S.
18 @forAll :X, :Y, :Z, :A, :B, :O.
19
20 :SSNPolicy a air:Policy;
21 air:label "SSN sample policy for IARPA PIR project ";
22 air:rule :SSN_RULE1.
23
24 :SSN_RULE1 a air:BeliefRule;
25 air:label "SSN policy rule1";
26 air:pattern {
27 :Q a s:Select;
28 s:POSList :P;
29 s:WhereClause :W.
30 };

110

31 air:description (:Q " is a SPARQL query");
32 air:rule :SSN_RULE2.
33
34 :SSN_RULE2 a air:BeliefRule;
35 air:label "SSN policy rule2";
36 air:pattern {
37 :P s:variable :V.
38 :W s:TriplePattern :T.
39 :T log:includes { :X <http :// xmlns.com/foaf /0.1/ssn > :V

}.
40 :W s:Filter :F.
41 :F s:TriplePattern :S.
42 :S log:includes { :V [] [] }.
43 };
44 #air:description ("The query , " :Q ", uses SSN values in the

where clause as a pattern , " :T ", and as a filter , " :S ",
and retrieves SSN values as variable ," :V);

45 air:description ("The query , " :Q ", uses SSN values in the
where clause , as a filter and retrieves SSN values as well");

46 air:assert { :Q air:non -compliant -with :SSNPolicy };
47 air:alt [air:rule :SSN_RULE3].
48
49 :SSN_RULE3 a air:BeliefRule;
50 air:label "SSN policy rule3";
51 air:pattern {
52 :P s:variable :V.
53 :W s:TriplePattern :T.
54 :T log:includes { :X <http :// xmlns.com/foaf /0.1/ssn > :V

}
55 };
56 #air:description ("The query , " :Q ", uses SSN values in the

where clause as a pattern , " :T ", and retrieves SSN values
as variable ," :V);

57 air:description ("The query , " :Q ", uses SSN values in the
where clause and retrieves SSN values ");

58 air:assert { :Q air:non -compliant -with :SSNPolicy };
59 air:alt [air:rule :SSN_RULE5].
60
61 :SSN_RULE4 a air:BeliefRule;
62 air:label "SSN policy rule4";
63 air:pattern {
64 :P s:variable :V.
65 :W s:TriplePattern :T.
66 :T log:includes { :X <http :// xmlns.com/foaf /0.1/ssn > :Y

}
67 };
68 #air:description ("The query , " :Q ", includes reference to

SSN number in the where clause as a pattern ," :T);
69 air:description ("The query , " :Q ", includes reference to

SSN number in the where clause ");
70 air:assert { :Q air:non -compliant -with :SSNPolicy };
71 air:alt [air:rule :SSN_RULE7].
72
73 :SSN_RULE5 a air:BeliefRule;

111

74 air:label "SSN policy rule5";
75 air:pattern {
76 :W s:OptionalGraphPattern :O.
77 :O s:TriplePattern :T.
78 :T log:includes { [] <http :// xmlns.com/foaf /0.1/ssn > []

}
79 };
80 #air:description ("The query , " :Q ", includes reference to

SSN number in the optional part of the where clause as a
pattern ," :T);

81 air:description ("The query , " :Q ", includes reference to
SSN number in the optional part of the where clause ");

82 air:assert { :Q air:non -compliant -with :SSNPolicy };
83 air:alt [air:rule :SSN_RULE4].
84
85 :SSN_RULE6 a air:BeliefRule;
86 air:label "SSN policy rule6";
87 air:pattern {
88 :W s:TriplePattern :T.
89 :T log:notIncludes { [] <http :// xmlns.com/foaf /0.1/ssn >

[] }
90 };
91 air:description ("The query , " :Q ", does not includes

reference to SSN number in the where clause ");
92 #air:assert { :Q air:compliant -with :SSNPolicy }.
93 air:rule :SSN_RULE7.
94
95 :SSN_RULE7 a air:BeliefRule;
96 air:label "SSN policy rule7";
97 air:pattern {
98 :W s:OptionalGraphPattern :O.
99 };

100 air:description ("The query , " :Q ", has an optional part")
;

101 air:rule :SSN_RULE8;
102 air:alt :SSN_RULE9.
103
104 :SSN_RULE9 a air:BeliefRule;
105 air:pattern {};
106 air:assert { :Q air:compliant -with :SSNPolicy };
107 air:description ("The query , " :Q ", does not have a

reference to SSN number in its optional section as it does
not have an optional section ").

108
109
110 :SSN_RULE8 a air:BeliefRule;
111 air:label "SSN policy rule8";
112 air:pattern {
113 :O s:TriplePattern :A.
114 :A log:notIncludes { [] <http :// xmlns.com/foaf /0.1/ssn >

[] }
115
116 };

112

117 air:description ("The query , " :Q ", does not includes
reference to SSN number in the optional section of the
where clases ");

118 air:assert { :Q air:compliant -with :SSNPolicy }.
119
120
121
122
123 :SSNPolicy_WhereClause a air:Policy;
124 air:label "SSN where clause policy for IARPA PIR project ";
125 air:rule :SSN_WC01.
126
127 :SSN_WC01 a air:BeliefRule;
128 air:label "SSN where clause rule 01";
129 air:pattern {
130 :Q a s:Select;
131 s:POSList :P;
132 s:WhereClause :W.
133 };
134 air:description (:Q " is a SPARQL query");
135 air:rule :SSN_WC02.
136
137 :SSN_WC02 a air:BeliefRule;
138 air:label "SSN where clause rule 02";
139 air:pattern {
140 :P s:variable :V.
141 :W s:TriplePattern :T.
142 :T log:includes { :X <http :// xmlns.com/foaf /0.1/ssn > :Y

}
143 };
144 air:description ("The query , " :Q ", includes reference to

SSN number in the where clause ");
145 air:assert { :Q air:non -compliant -with :

SSNPolicy_WhereClause }.
146
147
148 :SSNPolicy_OptionalClause a air:Policy;
149 air:label "SSN optional clause policy for IARPA PIR project ";
150 air:rule :SSN_OP01.
151
152 :SSN_OP01 a air:BeliefRule;
153 air:label "SSN optional clause rule 01";
154 air:pattern {
155 :Q a s:Select;
156 s:POSList :P;
157 s:WhereClause :W.
158 };
159 air:description (:Q " is a SPARQL query");
160 air:rule :SSN_OP02.
161
162 :SSN_OP02 a air:BeliefRule;
163 air:label "SSN optional clause rule 02";
164 air:pattern {
165 :W s:OptionalGraphPattern :O.

113

166 :O s:TriplePattern :T.
167 :T log:includes { [] <http :// xmlns.com/foaf /0.1/ssn > []

}
168 };
169 air:description ("The query , " :Q ", includes reference to

SSN number in the optional part of the where clause ");
170 air:assert { :Q air:non -compliant -with :

SSNPolicy_OptionalClause }.
171
172
173 :SSNPolicy_OutputRule a air:Policy;
174 air:label "SSN output rule policy for IARPA PIR project ";
175 air:rule :SSN_OR01.
176
177 :SSN_OR01 a air:BeliefRule;
178 air:label "SSN output rule 01";
179 air:pattern {
180 :Q a s:Select;
181 s:POSList :P;
182 s:WhereClause :W.
183 };
184 air:description (:Q " is a SPARQL query");
185 air:rule :SSN_OR02.
186
187 :SSN_OR02 a air:BeliefRule;
188 air:label "SSN output rule 02";
189 air:pattern {
190 :P s:variable :V.
191 :W s:TriplePattern :T.
192 :T log:includes { [] <http :// xmlns.com/foaf /0.1/ssn > :V

}.
193 };
194 air:description ("The query , " :Q ", tries to output a

variable " :P " that is an SSN");
195 air:assert { :Q air:non -compliant -with :SSNPolicy_OutputRule

}.
196
197
198
199 :SSNPolicy_FilterRule a air:Policy;
200 air:label "SSN filter rule policy for IARPA PIR project ";
201 air:rule :SSN_FR01.
202
203 :SSN_FR01 a air:BeliefRule;
204 air:label "SSN filter rule 01";
205 air:pattern {
206 :Q a s:Select;
207 s:POSList :P;
208 s:WhereClause :W.
209 };
210 air:description (:Q " is a SPARQL query");
211 air:rule :SSN_FR02.
212
213 :SSN_FR02 a air:BeliefRule;

114

214 air:label "SSN filter rule 02";
215 air:pattern {
216 :P s:variable :V.
217 :W s:TriplePattern :T.
218 :T log:includes { :X <http :// xmlns.com/foaf /0.1/ssn > :V

}.
219 :W s:Filter :F.
220 :F s:TriplePattern :S.
221 :S log:includes { :V [] [] }.
222 };
223 air:description ("The query , " :Q ", filters on SSN

variables ");
224 air:assert { :Q air:non -compliant -with :SSNPolicy_FilterRule

}.
225
226 #ends

B.3 SSN Policy - Current Ontology

1 # SSN Policy: No one can access SSN information from the database.
2 # As a result , no one may USE or RETRIEVE data tagged as SSN data.
3 # We include two separate policies: one for usage , and one for

retrieval.
4
5 @prefix type: <http :// dig.csail.mit.edu /2009/ IARPA -PIR/generic#> .
6 @prefix air: <http :// dig.csail.mit.edu/TAMI /2007/ amord/air#> .
7 @prefix log: <http :// www.w3.org /2000/10/ swap/log#>.
8 @prefix s: <http :// dig.csail.mit.edu /2009/ IARPA -PIR/sparql#> .
9 @prefix : <http :// dig.csail.mit.edu /2009/ IARPA -PIR/ssn -policy#> .

10
11 @forAll :P, :Q, :T, :U, :V, :W.
12
13 # The USE policy.
14
15 :SSN -USE -Policy a air:Policy;
16 air:label "SSN USE policy. For IARPA PIR project .";
17 air:rule :SSN_USE_RULE1.
18
19 :SSN_USE_RULE1 a air:BeliefRule;
20 air:label "SSN USE policy rule 1. Checks for query .";
21 air:pattern {
22 :Q a s:SPARQLQuery;
23 # s:retrieve :P; - a query doesn ’t need to output

anything in order
24 # to USE something!
25 s:clause :W.
26 };
27 air:description (:Q " is a query .");
28 air:rule :SSN_USE_RULE2.
29
30 :SSN_USE_RULE2 a air:BeliefRule;
31 air:label "SSN USE policy rule 2. Checks for use , i.e.

filtering .";

115

32 air:pattern {
33 # :P s:var :V. - we don ’t need to bind to an output

variable
34 # in order to USE an SSN.
35 :W s:triplePattern :T.
36 :T log:includes { [] type:SSN :V }.
37 :W s:triplePattern :U.
38 :U log:includes { :V [] [] }.
39 };
40 air:description ("The query , " :Q ", includes a USE of an

SSN in the pattern " :U ". The policy states that queries
may not USE social security number data .");

41 air:assert { :Q air:non -compliant -with :SSN -USE -Policy };
42 air:alt [air:assert { :Q air:compliant -with :SSN -USE -Policy

}].
43
44
45 # The RETRIEVE policy.
46
47 :SSN -RETRIEVE -Policy a air:Policy;
48 air:label "SSN RETRIEVE policy. For IARPA PIR project ";
49 air:rule :SSN_RETRIEVE_RULE1.
50
51 :SSN_RETRIEVE_RULE1 a air:BeliefRule;
52 air:label "SSN RETRIEVE policy rule 1. Checks for query .";
53 air:pattern {
54 :Q a s:SPARQLQuery;
55 s:retrieve :P;
56 s:clause :W.
57 };
58 air:description (:Q " is a query .");
59 air:rule :SSN_RETRIEVE_RULE2.
60
61 :SSN_RETRIEVE_RULE2 a air:BeliefRule;
62 air:label "SSN RETRIEVE policy rule 2. Checks for retrieval ,

i.e. output .";
63 air:pattern {
64 :P s:var :V.
65 :W s:triplePattern :T.
66 :T log:includes { [] type:SSN :V }.
67 };
68 air:description ("The query , " :Q ", will RETRIEVE SSN data

in the pattern " :T ". The policy states that queries may
not RETRIEVE social security number data .");

69 air:assert { :Q air:non -compliant -with :SSN -RETRIEVE -Policy
};

70 air:alt [air:assert { :Q air:compliant -with :SSN -RETRIEVE -
Policy }].

71
72
73 #ends

116

B.4 A sample SPARQL Query

1 PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
2 PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
3 SELECT ? s ? id ?n WHERE {
4 ? s f o a f : s sn ?n .
5 ? s f o a f : age ?a .
6 ? s f o a f : openid ? id .
7 FILTER (? a > 18)
8 }

B.5 Abstract SPARQL to N3 Ontology

1 # $Date: 2009 -07 -27 13:04:49 -0400 (Mon , 27 Jul 2009) $
2 # $Revision: 26843 $
3 # $Author: yyyaron $
4
5 @prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .
6 @prefix rdfs: <http :// www.w3.org /2000/01/rdf -schema#> .
7 @prefix xsd: <http :// www.w3.org /2001/ XMLSchema#> .
8
9 @prefix : <http :// dig.csail.mit.edu /2009/ IARPA -PIR/sparql#> .

10
11 # abstract ontology to express subset of SPARQL queries
12
13 <> rdfs:comment "abstract ontology to express subset of SPARQL

queries ".
14
15 #example sparql query
16 #PREFIX rdfs: <http ://www.w3.org /2000/01/ rdf -schema#>
17 #PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
18 #PREFIX example: <http :// example.org/>
19 #SELECT * WHERE {
20 # ?s example:age ?a.
21 # ?s foaf:openid ?id.
22 # OPTIONAL { ?s example:ssn ?n }.
23 # FILTER (?a > 18)
24 #}
25 # translated to
26 #@prefix s: <http ://dig.csail.mit.edu /2009/ IARPA -PIR/abstract -sparql

#> .
27 #
28 #:Query -1052391960 a s:SPARQLQuery;
29 # s:retrieve [s:var :id; s:var :n; s:var :s; s:var :a];
30 # s:clause [
31 # s:triplePattern { :s <http :// example.org/age > :a };
32 # s:triplePattern { :s <http :// xmlns.com/foaf /0.1/ openid > :id

};
33 # s:triplePattern { :s <http :// example.org/ssn > :n };
34 # s:triplePattern { :a s:booleanGT "18 "}
35 #].
36
37 :SPARQLQuery a rdfs:Class;

117

38 rdfs:label "Abstract class of SPARQL queries .".
39
40 :source a rdf:Property;
41 rdfs:label "URIs from which a query may pull data .";
42 rdfs:domain :SPARQLQuery;
43
44 :retrieve a rdf:Property;
45 rdfs:label "Values retrieved by a query .";
46 rdfs:domain :SPARQLQuery;
47 rdfs:range :RetrievedVar.
48
49 :RetrievedVar a rdfs:Class;
50 rdfs:label "Class consisting of retrieved variables .".
51
52 :var a rdf:Property;
53 rdfs:label "Values retrieved by a query .";
54 rdfs:domain :RetrievedVar.
55
56 :clause a rdf:Property;
57 rdfs:label "Conditions or where clause associated with the query

.";
58 rdfs:domain :SPARQLQuery;
59 rdf:range :Clause.
60
61 :Clause a rdfs:Class;
62 rdfs:label "Class consisting of triple patterns .".
63
64 :triplePattern a rdf:Property;
65 rdfs:label "A triple pattern for each condition/where .";
66 rdfs:domain :Clause.
67
68 # These are arithmetic and Boolean operators that the translation

recognizes.
69
70 rdf:resourceNegation a rdf:Property;
71 rdfs:label "Negative of a number , -.";
72 rdfs:domain rdf:resource.
73
74 rdf:resourceInverse a rdf:Property;
75 rdfs:label "Inverse of a number , /.";
76 rdfs:domain rdf:resource.
77
78 rdf:resourceSum a rdf:Property;
79 rdfs:label "Sum of two numbers , +.";
80 rdfs:domain rdf:resource.
81
82 rdf:resourceProduct a rdf:Property;
83 rdfs:label "Multiplication of two numbers , *.";
84 rdfs:domain rdf:resource.
85
86 :booleanNOT a rdf:Property;
87 rdfs:label "The Boolean NOT operator , ! or ~.";
88 rdfs:domain rdf:resource.
89

118

90 :booleanAND a rdf:Property;
91 rdfs:label "The Boolean AND operator , &&.";
92 rdfs:domain rdf:resource.
93
94 :booleanOR a rdf:Property;
95 rdfs:label "The Boolean OR operator , ||.";
96 rdfs:domain rdf:resource.
97
98 :booleanEQ a rdf:Property;
99 rdfs:label "An equal to relationship , =.";

100 rdfs:domain rdf:resource.
101
102 :booleanNE a rdf:Property;
103 rdfs:label "A not equal to relationship , !=.";
104 rdfs:domain rdf:resource.
105
106 :booleanLT a rdf:Property;
107 rdfs:label "A less than relationship , <.";
108 rdfs:domain rdf:resource.
109
110 :booleanGT a rdf:Property;
111 rdfs:label "A greater than relationship , >.";
112 rdfs:domain rdf:resource.
113
114 :booleanLE a rdf:Property;
115 rdfs:label "A less than or equal to relationship , <=.";
116 rdfs:domain rdf:resource.
117
118 :booleanGE a rdf:Property;
119 rdfs:label "A greater than or equal to relationship , >=.";
120 rdfs:domain rdf:resource.
121
122 #ends

B.6 Sample Restriction Policy

1 # Auto -generated AIR restriction policy.
2
3 @prefix air: <http :// dig.csail.mit.edu/TAMI /2007/ amord/air#>.
4 @prefix log: <http :// www.w3.org /2000/10/ swap/log#>.
5 @prefix math: <http :// www.w3.org /2000/10/ swap/math#>.
6 @prefix s: <http :// dig.csail.mit.edu /2009/ IARPA -PIR/sparql#>.
7 @prefix : <>.
8
9 # User -defined namespaces:

10 @prefix example: <http :// www.example.com/#> .
11
12 @forAll :P, :Q, :T, :U, :V, :W.
13
14 :sample -restriction a air:Policy;
15 air:label "A sample auto -generated restriction policy .";
16 air:rule :sample -restriction -check.
17

119

18 :sample -restriction -check a air:BeliefRule;
19 air:label "sample -restriction query check";
20 air:pattern {
21 :Q a s:SPARQLQuery;
22 s:retrieve :P;
23 s:clause :W.
24 };
25 air:description ("Make sure this is a query .");
26 # Goes to the first rule. If there are no attributes ,
27 # simply go to the default rule.
28 air:rule :sample -restriction -rule -0.
29
30 :sample -restriction -rule -0 a air:BeliefRule;
31 air:label "sample -restriction example:name restriction ";
32 air:pattern {
33 # if RETRIEVE , or alternately , not USE
34 :P s:var :V;
35 :W s:triplePattern :T;
36 :T log:includes { [] example:name :V }
37 };
38 air:description ("A restriction on the RETRIEVE of example:name ,

violated by " :T);
39 air:assert {:Q air:non -compliant -with :sample -restriction)};
40 # There are more policies , go to the next policy.
41 air:alt [air:rule :sample -restriction -rule -1] .
42
43 :sample -restriction -rule -1 a air:BeliefRule;
44 air:label "sample -restriction example:age restriction ";
45 air:pattern {
46 # if USE
47 :W s:triplePattern :T;
48 :T log:includes { [] example:age :V };
49 :W s:triplePattern :U;
50 :U log:includes { :V [] [] }.
51 };
52 air:description ("A restriction on the USE of example:age ,

violated by " :T);
53 air:assert {:Q air:non -compliant -with :sample -restriction)};
54 # There are more policies , go to the next policy.
55 air:alt [air:rule :sample -restriction -rule -2] .
56
57 :sample -restriction -rule -2 a air:BeliefRule;
58 air:label "sample -restriction example:dob restriction ";
59 air:pattern {
60 # if RETRIEVE , or alternately , not USE
61 :P s:var :V;
62 :W s:triplePattern :T;
63 :T log:includes { [] example:dob :V }
64 };
65 air:description ("A restriction on the RETRIEVE of example:dob ,

violated by " :T);
66 air:assert {:Q air:non -compliant -with :sample -restriction)};
67 # There are more policies , go to the next policy.
68 air:alt [air:rule :sample -restriction -rule -3] .

120

69
70 :sample -restriction -rule -3 a air:BeliefRule;
71 air:label "sample -restriction example:ssn restriction ";
72 air:pattern {
73 # if USE
74 :W s:triplePattern :T;
75 :T log:includes { [] example:ssn :V };
76 :W s:triplePattern :U;
77 :U log:includes { :V [] [] }.
78 };
79 air:description ("A restriction on the USE of example:ssn ,

violated by " :T);
80 air:assert {:Q air:non -compliant -with :sample -restriction)};
81 # No more policies , go to the base case.
82 air:alt [air:rule :sample -restriction -default] .
83
84 :sample -restriction -default a air:BeliefRule;
85 air:label "sample -restriction default rule";
86 air:pattern { # Empty search.
87 };
88 air:description ("No restricted attributes found .");
89 air:assert{ :Q air:compliant -with :sample -restriction } .
90
91 #ends

B.7 Sample Inclusion Policy

1 # Auto -generated AIR inclusion policy.
2
3 @prefix air: <http :// dig.csail.mit.edu/TAMI /2007/ amord/air#>.
4 @prefix log: <http :// www.w3.org /2000/10/ swap/log#>.
5 @prefix math: <http :// www.w3.org /2000/10/ swap/math#>.
6 @prefix s: <http :// dig.csail.mit.edu /2009/ IARPA -PIR/sparql#>.
7 @prefix : <>.
8
9 # User -defined namespaces:

10 @prefix example: <http :// www.example.com/#> .
11
12 @forAll :P, :Q, :T, :U, :V, :W.
13 @forAll :T0 , :U0 , :V0. # Variables for example:name
14 @forAll :T1 , :U1 , :V1. # Variables for example:age
15 @forAll :T2 , :U2 , :V2. # Variables for example:dob
16 @forAll :T3 , :U3 , :V3. # Variables for example:ssn
17
18 :sample -inclusion a air:Policy;
19 air:label "A sample auto -generated inclusion policy .";
20 air:rule :sample -inclusion -check.
21
22 :sample -inclusion -check a air:BeliefRule;
23 air:label "sample -inclusion query check";
24 air:pattern {
25 :Q a s:SPARQLQuery;
26 s:retrieve :P;

121

27 s:clause :W.
28 };
29 air:description ("Make sure this is a query .");
30 # Goes to the first rule. If there are no attributes ,
31 # simply go to the default rule.
32 air:rule :sample -inclusion -compliance -rule.
33
34 :sample -inclusion -compliance -rule a air:BeliefRule;
35 air:label "sample -inclusion , an inclusion policy .";
36 air:pattern {
37 # Catch RETRIEVE
38 :P s:var :V0.
39 :W s:triplePattern :T0.
40 :T0 log:includes { [] example:name :V0 } .
41 # Catch USE
42 :W s:triplePattern :T1.
43 :T1 log:includes { [] example:age :V1 }.
44 :W s:triplePattern :U1.
45 :U1 log:includes { :V1 [] [] } .
46 # Catch RETRIEVE
47 :P s:var :V2.
48 :W s:triplePattern :T2.
49 :T2 log:includes { [] example:dob :V2 } .
50 # Catch USE
51 :W s:triplePattern :T3.
52 :T3 log:includes { [] example:ssn :V3 }.
53 :W s:triplePattern :U3.
54 :U3 log:includes { :V3 [] [] } .
55 };
56 air:description ("This inclusion policy states that you must do

all four of these actions: RETRIEVE example:name , USE example
:age , RETRIEVE example:dob , USE example:ssn. This query is
compliant: " :Q) ;

57 air:assert{ :Q air:compliant -with :sample -inclusion } ;
58 # All or none. If we don ’t match all , start looking for

individuals.
59 air:alt [air:rule :sample -inclusion -rule -0] .
60
61 :sample -inclusion -rule -0 a air:BeliefRule;
62 air:label "sample -inclusion example:name usage check";
63 air:pattern {
64 # if RETRIEVE , or alternately , not USE
65 :P s:var :V;
66 :W s:triplePattern :T;
67 :T log:includes { [] example:name :V }
68 };
69 air:description (" Inclusion includes RETRIEVE of example:name ,

violated by " :T);
70 air:assert {:Q air:non -compliant -with :sample -inclusion)};
71 # There are more attributes , go to the next policy.
72 air:alt [air:rule :sample -inclusion -rule -1] .
73
74 :sample -inclusion -rule -1 a air:BeliefRule;
75 air:label "sample -inclusion example:age usage check";

122

76 air:pattern {
77 # if USE
78 :W s:triplePattern :T;
79 :T log:includes { [] example:age :V };
80 :W s:triplePattern :U;
81 :U log:includes { :V [] [] }.
82 };
83 air:description (" Inclusion includes USE of example:age ,

violated by " :T);
84 air:assert {:Q air:non -compliant -with :sample -inclusion)};
85 # There are more attributes , go to the next policy.
86 air:alt [air:rule :sample -inclusion -rule -2] .
87
88 :sample -inclusion -rule -2 a air:BeliefRule;
89 air:label "sample -inclusion example:dob usage check";
90 air:pattern {
91 # if RETRIEVE , or alternately , not USE
92 :P s:var :V;
93 :W s:triplePattern :T;
94 :T log:includes { [] example:dob :V }
95 };
96 air:description (" Inclusion includes RETRIEVE of example:dob ,

violated by " :T);
97 air:assert {:Q air:non -compliant -with :sample -inclusion)};
98 # There are more attributes , go to the next policy.
99 air:alt [air:rule :sample -inclusion -rule -3] .

100
101 :sample -inclusion -rule -3 a air:BeliefRule;
102 air:label "sample -inclusion example:ssn usage check";
103 air:pattern {
104 # if USE
105 :W s:triplePattern :T;
106 :T log:includes { [] example:ssn :V };
107 :W s:triplePattern :U;
108 :U log:includes { :V [] [] }.
109 };
110 air:description (" Inclusion includes USE of example:ssn ,

violated by " :T);
111 air:assert {:Q air:non -compliant -with :sample -inclusion)};
112 # No more attributes , go to the base case.
113 air:alt [air:rule :sample -inclusion -default] .
114
115
116 :sample -inclusion -default a air:BeliefRule;
117 air:label "sample -inclusion default rule";
118 air:pattern { # Empty search.
119 };
120 air:description ("This inclusion policy states that you must do

all four of these actions: RETRIEVE example:name , USE example
:age , RETRIEVE example:dob , USE example:ssn. No regulated
attributes found. Asserting compliance .");

121 air:assert{ :Q air:compliant -with :sample -inclusion } .
122
123 #ends

123

B.8 Sample Exclusion Policy

1 # Auto -generated AIR exclusion policy.
2
3 @prefix air: <http :// dig.csail.mit.edu/TAMI /2007/ amord/air#>.
4 @prefix log: <http :// www.w3.org /2000/10/ swap/log#>.
5 @prefix math: <http :// www.w3.org /2000/10/ swap/math#>.
6 @prefix s: <http :// dig.csail.mit.edu /2009/ IARPA -PIR/sparql#>.
7 @prefix : <>.
8
9 # User -defined namespaces:

10 @prefix example: <http :// www.example.com/#> .
11
12 @forAll :P, :Q, :T, :U, :V, :W.
13 @forAll :T0 , :U0 , :V0. # Variables for example:name
14 @forAll :T1 , :U1 , :V1. # Variables for example:age
15 @forAll :T2 , :U2 , :V2. # Variables for example:dob
16 @forAll :T3 , :U3 , :V3. # Variables for example:ssn
17
18 :sample -exclusion a air:Policy;
19 air:label "A sample auto -generated exclusion policy .";
20 air:rule :sample -exclusion -check.
21
22 :sample -exclusion -check a air:BeliefRule;
23 air:label "sample -exclusion query check";
24 air:pattern {
25 :Q a s:SPARQLQuery;
26 s:retrieve :P;
27 s:clause :W.
28 };
29 air:description ("Make sure this is a query .");
30 # Goes to the first rule. If there are no attributes ,
31 # simply go to the default rule.
32 air:rule :sample -exclusion -noncompliance -rule.
33
34 :sample -exclusion -noncompliance -rule a air:BeliefRule;
35 air:label "sample -exclusion , a default deny policy .";
36 air:pattern {
37 # Catch RETRIEVE
38 :P s:var :V0.
39 :W s:triplePattern :T0.
40 :T0 log:includes { [] example:name :V0 } .
41 # Catch USE
42 :W s:triplePattern :T1.
43 :T1 log:includes { [] example:age :V1 }.
44 :W s:triplePattern :U1.
45 :U1 log:includes { :V1 [] [] } .
46 # Catch RETRIEVE
47 :P s:var :V2.
48 :W s:triplePattern :T2.
49 :T2 log:includes { [] example:dob :V2 } .
50 # Catch USE
51 :W s:triplePattern :T3.

124

52 :T3 log:includes { [] example:ssn :V3 }.
53 :W s:triplePattern :U3.
54 :U3 log:includes { :V3 [] [] } .
55 };
56 air:description ("You may see up to 3 of 4 of these attributes:

example:name example:age example:dob example:ssn . This query
is incompliant: " :Q) ;

57 air:assert{ :Q air:non -compliant -with :sample -exclusion } ;
58 # No more policies , go to the base case.
59 air:alt [air:rule :sample -exclusion -default] .
60
61
62 :sample -exclusion -default a air:BeliefRule;
63 air:label "sample -exclusion default rule";
64 air:pattern { # Empty search.
65 };
66 air:description ("No regulated attributes found. Asserting

compliance .");
67 air:assert{ :Q air:compliant -with :sample -exclusion } .
68
69 #ends

B.9 Sample History-Aware Exclusion Policy

1 # Auto -generated AIR exclusion policy , history aware.
2
3 @prefix air: <http :// dig.csail.mit.edu/TAMI /2007/ amord/air#> .
4 @prefix log: <http :// www.w3.org /2000/10/ swap/log#> .
5 @prefix math: <http :// www.w3.org /2000/10/ swap/math#> .
6 @prefix s: <http :// dig.csail.mit.edu /2009/ IARPA -PIR/sparql#> .
7 @prefix : <> .
8
9 # User -defined namespaces:

10 @prefix example: <http :// www.example.com/#> .
11
12 @forAll :CURRENT , :H, :HISTORY.
13 @forAll :P0 , :Q0 , :T0 , :U0 , :V0 , :W0. # Variables for example:name
14 @forAll :P1 , :Q1 , :T1 , :U1 , :V1 , :W1. # Variables for example:age
15 @forAll :P2 , :Q2 , :T2 , :U2 , :V2 , :W2. # Variables for example:dob
16 @forAll :P3 , :Q3 , :T3 , :U3 , :V3 , :W3. # Variables for example:ssn
17
18 :sample -exclusion -history a air:Policy;
19 air:label "A sample auto -generated history aware exclusion

policy .";
20 air:rule :sample -exclusion -history -check.
21
22 :sample -exclusion -history -check a air:BeliefRule;
23 air:label "sample -exclusion -history query check";
24 air:pattern {
25 :CURRENT a s:ComplianceQuery;
26 s:Query :Q;
27 s:History :HISTORY.
28 };

125

29 air:description ("Make sure this is a query .");
30 # Goes to the first rule. If there are no attributes ,
31 # simply go to the default rule.
32 air:rule :sample -exclusion -history -noncompliance -rule.
33
34 :sample -exclusion -history -noncompliance -rule a air:BeliefRule;
35 air:label "sample -exclusion -history , a default deny policy .";
36 air:pattern {
37 :HISTORY log:semantics :H .
38 # Catch RETRIEVE of example:name
39 :H log:includes {
40 :Q0 a s:SPARQLQuery;
41 s:retrieve :P0;
42 s:clause :W0.
43 :P0 s:var :V0.
44 :W0 s:triplePattern :T0. } .
45 :T0 log:includes { [] example:name :V0 } .
46 # Catch USE of example:age
47 :H log:includes {
48 :Q1 a s:SPARQLQuery;
49 s:retrieve :P1;
50 s:clause :W1.
51 :W1 s:triplePattern :T1.
52 :W1 s:triplePattern :U1. } .
53 :U1 log:includes { :V1 [] [] } .
54 :T1 log:includes { [] example:age :V1 }.
55 # Catch RETRIEVE of example:dob
56 :H log:includes {
57 :Q2 a s:SPARQLQuery;
58 s:retrieve :P2;
59 s:clause :W2.
60 :P2 s:var :V2.
61 :W2 s:triplePattern :T2. } .
62 :T2 log:includes { [] example:dob :V2 } .
63 # Catch USE of example:ssn
64 :H log:includes {
65 :Q3 a s:SPARQLQuery;
66 s:retrieve :P3;
67 s:clause :W3.
68 :W3 s:triplePattern :T3.
69 :W3 s:triplePattern :U3. } .
70 :U3 log:includes { :V3 [] [] } .
71 :T3 log:includes { [] example:ssn :V3 }.
72 };
73 air:description ("You may see up to 3 of 4 of these attributes:

example:name example:age example:dob example:ssn . The query
history finds that this new query is incompliant: " :Q);

74 air:assert{ :Q air:non -compliant -with :sample -exclusion -history
} ;

75 # No more policies , go to the base case.
76 air:alt [air:rule :sample -exclusion -history -default] .
77
78
79 :sample -exclusion -history -default a air:BeliefRule;

126

80 air:label "sample -exclusion -history default rule";
81 air:pattern { # Empty search.
82 };
83 air:description ("No regulated attributes found by this history -

aware exclusion policy. Asserting compliance by default .");
84 air:assert{ :Q air:compliant -with :sample -exclusion -history } .
85
86 #ends

B.10 Sample Chaining Policy

1 # Auto -generated AIR chaining policy.
2 # Policy is default non -compliant. Patterns assert compliance.
3
4 @prefix air: <http :// dig.csail.mit.edu/TAMI /2007/ amord/air#>.
5 @prefix log: <http :// www.w3.org /2000/10/ swap/log#>.
6 @prefix math: <http :// www.w3.org /2000/10/ swap/math#>.
7 @prefix s: <http :// dig.csail.mit.edu /2009/ IARPA -PIR/sparql#>.
8 @prefix : <>.
9

10 # User -defined namespaces:
11 @prefix example: <http :// www.example.com/#> .
12
13 @forAll :P, :Q, :T, :U, :V, :W.
14
15 :sample -chaining a air:Policy;
16 air:label "A sample auto -generated default -noncompliant chaining

policy .";
17 air:rule :sample -chaining -check.
18
19 :sample -chaining -check a air:BeliefRule;
20 air:label "sample -chaining query check";
21 air:pattern {
22 :Q a s:SPARQLQuery;
23 s:retrieve :P;
24 s:clause :W.
25 };
26 air:description ("Make sure this is a query .");
27 # Goes to the first rule. If there are no attributes ,
28 # simply go to the default rule.
29 air:rule :sample -chaining -rule -0.
30
31 :sample -chaining -rule -0 a air:BeliefRule;
32 air:label "sample -chaining example:name presence check";
33 air:pattern {
34 # if RETRIEVE , or alternately , not USE
35 :P s:var :V;
36 :W s:triplePattern :T;
37 :T log:includes { [] example:name :V } .
38 };
39 air:description (" Chaining has found the first pattern RETRIEVE

in " :T);
40 air:rule :sample -chaining -rule -1;

127

41 air:alt [air:rule :sample -chaining -default] .
42
43 :sample -chaining -rule -1 a air:BeliefRule;
44 air:label "sample -chaining example:age presence check";
45 air:pattern {
46 # if USE
47 :W s:triplePattern :T;
48 :T log:includes { [] example:age :V };
49 :W s:triplePattern :U;
50 :U log:includes { :V [] [] }.
51 };
52 air:description ("A restriction on the USE of example:age ,

violated by " :T);
53 air:assert { :Q air:compliant -with :sample -chaining } ;
54 # There are more policies , go to the next policy.
55 air:alt [air:rule :sample -chaining -rule -2] .
56
57 :sample -chaining -rule -2 a air:BeliefRule;
58 air:label "sample -chaining example:dob presence check";
59 air:pattern {
60 # if RETRIEVE , or alternately , not USE
61 :P s:var :V;
62 :W s:triplePattern :T;
63 :T log:includes { [] example:dob :V } .
64 };
65 air:description ("A restriction on the RETRIEVE of example:dob ,

violated by " :T);
66 air:assert { :Q air:compliant -with :sample -chaining } ;
67 # There are more policies , go to the next policy.
68 air:alt [air:rule :sample -chaining -rule -3] .
69
70 :sample -chaining -rule -3 a air:BeliefRule;
71 air:label "sample -chaining example:ssn presence check";
72 air:pattern {
73 # if USE
74 :W s:triplePattern :T;
75 :T log:includes { [] example:ssn :V };
76 :W s:triplePattern :U;
77 :U log:includes { :V [] [] }.
78 };
79 air:description ("A restriction on the USE of example:ssn ,

violated by " :T);
80 air:assert { :Q air:compliant -with :sample -chaining } ;
81 # Not done yet! There is at least one filter to check.
82 air:alt [air:rule :sample -chaining -filter -0] .
83
84 :sample -chaining -filter -0 a air:BeliefRule;
85 air:label "sample -chaining filter check";
86 air:pattern {
87 # Test for the filter.
88 :W s:triplePattern :T;
89 :T log:includes { [] example:age :V };
90 :V math:lessThan 1991.
91 };

128

92 air:description ("A filter of the form (example:age math:
lessThan 1991) , matched in " :T);

93 air:assert { :Q air:compliant -with :sample -chaining } ;
94 # There are more filters , go to the next policy.
95 air:alt [air:rule :sample -chaining -filter -1] .
96
97 :sample -chaining -filter -1 a air:BeliefRule;
98 air:label "sample -chaining filter check";
99 air:pattern {

100 # Test for the filter.
101 :W s:triplePattern :T;
102 :T log:includes { [] example:age :V };
103 :V math:greaterThan 18.
104 };
105 air:description ("A filter of the form (example:age math:

greaterThan 18), matched in " :T);
106 air:assert { :Q air:compliant -with :sample -chaining } ;
107 # No more filters , go to the default case.
108 air:alt [air:rule :sample -chaining -default] .
109
110 :sample -chaining -default a air:BeliefRule;
111 air:label "sample -chaining default rule";
112 air:pattern { # Empty search.
113 };
114 air:description ("No restricted attributes found .");
115 air:assert { :Q air:non -compliant -with :sample -chaining } ;
116 #ends

B.11 Sample Default Deny Policy

1 # Auto -generated AIR default deny policy.
2
3 @prefix air: <http :// dig.csail.mit.edu/TAMI /2007/ amord/air#>.
4 @prefix log: <http :// www.w3.org /2000/10/ swap/log#>.
5 @prefix math: <http :// www.w3.org /2000/10/ swap/math#>.
6 @prefix s: <http :// dig.csail.mit.edu /2009/ IARPA -PIR/sparql#>.
7 @prefix : <>.
8
9 # User -defined namespaces:

10 @prefix example: <http :// www.example.com/#> .
11
12 @forAll :P, :Q, :T, :V.
13
14 :sample -defaultdeny a air:Policy;
15 air:label "A sample auto -generated default deny policy .";
16 air:rule :sample -defaultdeny -check.
17
18 :sample -defaultdeny -check a air:BeliefRule;
19 air:label "sample -defaultdeny query check";
20 air:pattern {
21 :Q a s:SPARQLQuery;
22 s:retrieve :P;
23 s:clause :W.

129

24 };
25 air:description ("Make sure this is a query .");
26 # Goes to the first rule. If there are no attributes ,
27 # simply go to the default rule.
28 air:rule :sample -defaultdeny -noncompliance -rule.
29
30 :sample -defaultdeny -noncompliance -rule a air:BeliefRule;
31 air:label "sample -defaultdeny , a default deny policy .";
32 air:pattern {
33 :W s:triplePattern :T;
34 :T log:notIncludes { [] example:name [] };
35 :T log:notIncludes { [] example:age [] };
36 :T log:notIncludes { [] example:dob [] };
37 :T log:notIncludes { [] example:ssn [] };
38 };
39 air:description ("This policy only enables access to example:

name example:age example:dob example:ssn . Found a triple
pattern that mentions another predicate: " :T);

40 air:assert{ :Q air:non -compliant -with :sample -defaultdeny } ;
41 # No more policies , go to the base case.
42 air:alt [air:rule :sample -defaultdeny -default] .
43
44
45 :sample -defaultdeny -default a air:BeliefRule;
46 air:label "sample -defaultdeny default rule";
47 air:pattern { # Empty search.
48 };
49 air:description ("We could not find any attributes that must be

included. Asserting compliance by default .");
50 air:assert{ :Q air:compliant -with :sample -defaultdeny } .
51
52 #ends

B.12 No-Address Restriction Policy for Sample Sce-

nario

1 # Auto -generated AIR restriction policy.
2
3 @prefix air: <http :// dig.csail.mit.edu/TAMI /2007/ amord/air#>.
4 @prefix log: <http :// www.w3.org /2000/10/ swap/log#>.
5 @prefix math: <http :// www.w3.org /2000/10/ swap/math#>.
6 @prefix s: <http :// dig.csail.mit.edu /2009/ IARPA -PIR/sparql#>.
7 @prefix : <#>.
8
9 # User -defined namespaces:

10 @prefix ex: <http :// example.com/#>.
11
12
13 @forAll :P, :Q, :T, :U, :V, :W.
14
15 :no-address a air:Policy;

130

16 air:label "Users may not find the home address of members of the
database .";

17 air:rule :no -address -check.
18
19 :no -address -check a air:BeliefRule;
20 air:label "no -address query check";
21 air:pattern {
22 :Q a s:SPARQLQuery;
23 s:retrieve :P;
24 s:clause :W.
25 };
26 air:description ("Make sure this is a query .");
27 # Goes to the first rule. If there are no attributes ,
28 # simply go to the default rule.
29 air:rule :no -address -rule -0.
30
31 :no -address -rule -0 a air:BeliefRule;
32 air:label "no -address ex:address restriction ";
33 air:pattern {
34 # if RETRIEVE , or alternately , not USE
35 :P s:var :V.
36 :W s:triplePattern :T.
37 :T log:includes { [] ex:address :V }. #2
38 };
39 air:description ("A restriction on the RETRIEVE of ex:address ,

violated by " :T);
40 air:assert {:Q air:non -compliant -with :no -address };
41 # There are more policies , go to the next policy.
42 air:alt [air:rule :no -address -rule -1] .
43
44 :no -address -rule -1 a air:BeliefRule;
45 air:label "no -address ex:address restriction ";
46 air:pattern {
47 # if USE
48 :W s:triplePattern :T.
49 :T log:includes { [] ex:address :V }. #1
50 :W s:triplePattern :U.
51 :U log:includes { :V [] [] }.
52 };
53 air:description ("A restriction on the USE of ex:address ,

violated by " :T);
54 air:assert {:Q air:non -compliant -with :no -address };
55 # No more policies , go to the base case.
56 air:alt [air:rule :no -address -default] .
57
58 :no -address -default a air:BeliefRule;
59 air:label "no -address default rule";
60 air:pattern { # Empty search.
61 };
62 air:description ("No restricted attributes found .");
63 air:assert{ :Q air:compliant -with :no -address }.

131

132

Bibliography

[1] L. Kagal, “Policy assurance for pir queries.” http://dig.csail.mit.edu/2009/

Talks/0226-IARPA-PI/policy-assurance.pdf, 2009.

[2] S. Bratt, “Semantic web, and other technologies to watch.” http://www.w3.

org/2007/Talks/0130-sb-W3CTechSemWeb/, 2007.

[3] I. Herman, R. Swick, and D. Brickley, “Resource description framework (rdf).”
http://www.w3.org/RDF/, 2004.

[4] E. Prud’hommeaux and A. Seaborne, “Sparql query language for rdf.” http:

//www.w3.org/TR/rdf-sparql-query/, January 2008.

[5] MySQL A.B. and Sun Microsystems, “Mysql 6.0 reference manual.” http://

dev.mysql.com/doc/refman/6.0/en/index.html, 2009.

[6] R. K. Thomas and R. S. Sandhu, “Discretionary access control in object-oriented
databases: Issues and research directions,” in National Computer Security Con-
ference, pp. 63–74, September 1993.

[7] L. Qiu, Y. Zhang, F. Wang, M. Kyung, and H. R. Mahajan, “Trusted computer
system evaluation criteria,” in National Computer Security Center, 1985.

[8] D. F. Ferraiolo and D. R. Kuhn, “Role-based access controls,” in 15th National
Computer Security Conference, pp. 554–563, October 1992.

[9] H. Li, X. Zhang, H. Wu, and Y. Qu, “Design and application of rule based access
control policies,” in ISWC Workshop on Semantic Web and Policy, pp. 34–41,
2005.

[10] D. J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigenbaum, J. Hendler, and
G. J. Sussman, “Information accountability,” Communications of the ACM, June
2008.

[11] E. Prud’hommeaux, “Swobjects source code directory.” http://www.w3.org/

2008/04/SPARQLfed/, 2008.

[12] E. Prud’hommeaux, “Spasql: Sparql support in mysql.” http://www.w3.org/

2005/05/22-SPARQL-MySQL/XTech, June 2007.

133

http://dig.csail.mit.edu/2009/Talks/0226-IARPA-PI/policy-assurance.pdf
http://dig.csail.mit.edu/2009/Talks/0226-IARPA-PI/policy-assurance.pdf
http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/
http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://dev.mysql.com/doc/refman/6.0/en/index.html
http://dev.mysql.com/doc/refman/6.0/en/index.html
http://www.w3.org/2008/04/SPARQLfed/
http://www.w3.org/2008/04/SPARQLfed/
http://www.w3.org/2005/05/22-SPARQL-MySQL/XTech
http://www.w3.org/2005/05/22-SPARQL-MySQL/XTech

[13] L. Feigenbaum, “Dawg testcases.” http://www.w3.org/2001/sw/DataAccess/

tests/r2, 2004.

[14] L. Kagal, T. Berners-Lee, D. Connolly, and D. Weitzner, “Using semantinc web
technologies for policy management on the web,” in 21st National Conference
on Artificial Intelligence (AAAI), July 2006.

[15] O. Seneviratne, L. Kagal, D. Weitzner, H. Abelson, T. Berners-Lee, and N. Shad-
bolt, “Detecting creative commons license violations on images on the world wide
web,” in WWW2009, April 2009.

[16] O. W. Seneviratne, “Framework for Policy Aware Reuse of Content on the
WWW,” Master’s thesis, Massachusetts Institute of Technology, Cambridge,
MA, June 2009.

[17] J.-W. Byun, “Access control features in oracle.” http://www.cs.purdue.edu/

homes/ninghui/courses/Spring05/lectures/Oracle.pdf, April 2005.

[18] L. P. Hale and J. Levinger, “Oracle database security guide, 10g re-
lease 1.” http://www.stanford.edu/dept/itss/docs/oracle/10g/network.

101/b10773/title.htm, December 2003.

[19] R. Ramaswamy and R. S, “Role-based access control features in commercial
database management systems,” in In Proceedings of 21st NIST-NCSC National
Information Systems Security Conference, pp. 503–511, 1998.

[20] C. Y. Chung, M. Gertz, and K. Levitt, “Demids: A misuse detection system
for database systems,” in In Third International IFIP TC-11 WG11.5 Working
Conference on Integrity and Internal Control in Information Systems, pp. 159–
178, Kluwer Academic Publishers, 1999.

[21] R. Cathey, L. Ma, N. Goharian, and D. Grossman, “Misuse detection for informa-
tion retrieval systems,” in ACM 12th Conference on Information and Knowledge
Management, 2003.

[22] A. Kamra, E. Terzi, and E. Bertino, “Detecting anomalous access patterns in
relational databases,” VLDB Journal: The International Journal on Very Large
Data Bases, 2007.

[23] L. Sweeney, “k-anonymity: A model for protecting privacy,” International
Journal on Uncertainty, Fuzziness, and Knowledge-Based Systems, vol. 10 (5),
pp. 555–570, 2002.

[24] L. Sweeney, “Achieving k-anonymity privacy protection using generalization and
suppression,” International Journal on Uncertainty, Fuzziness, and Knowledge-
Based Systems, vol. 10 (5), pp. 571–588, 2002.

[25] L. Sweeney, “Guaranteeing anonymity when sharing medical data: the datafly
system,” in AMIA Annual Fall Symposium, 1997.

134

http://www.w3.org/2001/sw/DataAccess/tests/r2
http://www.w3.org/2001/sw/DataAccess/tests/r2
http://www.cs.purdue.edu/homes/ninghui/courses/Spring05/lectures/Oracle.pdf
http://www.cs.purdue.edu/homes/ninghui/courses/Spring05/lectures/Oracle.pdf
http://www.stanford.edu/dept/itss/docs/oracle/10g/network.101/b10773/title.htm
http://www.stanford.edu/dept/itss/docs/oracle/10g/network.101/b10773/title.htm

[26] A. D. Mascio, N. Chauvat, and S. Thenault, “fyzz is a sparkling python parser
for the sparql query language.” http://www.logilab.org/project/fyzz, 2009.

[27] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scientific Amer-
ican, May 2001.

[28] H. Halpin, S. Hawke, I. Herman, E. Prudhommeaux, D. Raggett, and R. Swick,
“W3c semantic web activity.” http://www.w3.org/2001/sw/, 2009.

[29] Adobe, “Adobe xmp partners.” http://www.adobe.com/products/xmp/

partners.html, 2009.

[30] C. Commons, “Describing copyright in rdf.” http://creativecommons.org/ns,
2009.

[31] T. Berners-Lee and D. Connolly, “Naming and addressing: Uris, urls,” http:

//www.w3.org/Addressing/, 1997.

[32] D. Beckett and B. McBride, “Rdf/xml syntax specification.” http://www.w3.

org/TR/rdf-syntax-grammar/, 2004.

[33] D. L. McGuinness and F. van Harmelen, “Owl web ontology language overview.”
http://www.w3.org/TR/owl-features/, 2004.

[34] T. Berners-Lee, “Tabulator: Generic data browser.” http://www.w3.org/2005/

ajar/tab, 2005.

[35] J. Rusher, “Rhetorical device: Triple store.” http://www.w3.org/2001/sw/

Europe/events/20031113-storage/positions/rusher.html, 2001.

[36] C. Forgy, “Rete: A fast algorithm for the many pattern/many object pattern
match problem,” Artificial Intelligence, vol. 19, p. 1737, 1982.

[37] T. Berners-Lee, “Semantic web application platform - swap.” http://www.w3.

org/2000/10/swap/, 2005.

[38] T. Berners-Lee, “cwm.” http://www.w3.org/2000/10/swap/doc/cwm.html,
2008.

[39] G. J. Sussman, G. L. S. Jr., C. Rich, J. Doyle, and J. de Kleer, “Amord: A
deductive procedure system,” MIT Artificial Intelligence Laboratory, 1977-08.

[40] L. Kagal, “Scenario 0: Mit prox card policy violation.” http://dig.csail.mit.

edu/TAMI/2007/s0/, 2007.

[41] L. Kagal, “Air policy tutorial.” http://tw.rpi.edu/proj/tami/AIR Policy

Tutorial, 2009.

135

http://www.logilab.org/project/fyzz
http://www.w3.org/2001/sw/
http://www.adobe.com/products/xmp/partners.html
http://www.adobe.com/products/xmp/partners.html
http://creativecommons.org/ns
http://www.w3.org/Addressing/
http://www.w3.org/Addressing/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/owl-features/
http://www.w3.org/2005/ajar/tab
http://www.w3.org/2005/ajar/tab
http://www.w3.org/2001/sw/Europe/events/20031113-storage/positions/rusher.html
http://www.w3.org/2001/sw/Europe/events/20031113-storage/positions/rusher.html
http://www.w3.org/2000/10/swap/
http://www.w3.org/2000/10/swap/
http://www.w3.org/2000/10/swap/doc/cwm.html
http://dig.csail.mit.edu/TAMI/2007/s0/
http://dig.csail.mit.edu/TAMI/2007/s0/
http://tw.rpi.edu/proj/tami/AIR_Policy_Tutorial
http://tw.rpi.edu/proj/tami/AIR_Policy_Tutorial

	Introduction
	Motivating Example
	Sample Usage Scenario

	System Components
	Outline

	Policy Assurance
	Introduction to Policy Assurance
	User Roles and Perspectives
	The Administrator
	The User
	The Auditor

	Modes of Operation
	Demonstration
	Describing a Free-Text Policy
	Checking a Compliant Query
	Checking an Incompliant Query
	Demo Notes

	Summary

	System Detail
	SPARQL Query Translation
	SPARQL to N3 Web Page
	Query Conversion Ontology
	swobjects: Parsing and Serializing
	SPARQL Language Translation
	Lost in Translation
	Translator Summary

	AIR Policy Generation
	Templates for Policy Generation
	Supported Policy Types
	Automatic Policy Generation
	Query History with check-compliance
	Policy Generation User Interface
	Compliance Testing and Browser Presentation in Tabulator
	Implementation Note

	Summary

	Performance
	Related and Prior Work
	Policy Awareness
	Methodologies of Access Control
	Mandatory and Discretionary Access Control
	Role Based Access Control
	Rule- and Policy-Based Access Control

	Prior Work in Relational Databases
	Access Control Lists
	Access Control Features In A Modern RDBMS
	Misuse and Intrusion Detection

	Alteration of Data

	Future Directions
	SPARQL Endpoint Integration
	SQL Support
	Completing and Porting the N3 Translator
	Policy Generation from Natural Language
	Semantic Policies
	Database Description

	Concluding Thoughts
	Background Technologies
	Semantic Web Overview
	The Vision
	The URI
	HTML, the HyperText Markup Language, and XML, the eXtensible Markup Language

	RDF
	Notation 3

	OWL
	Tabulator
	SPARQL
	Reasoning
	Forward Chaining
	Production Rule Systems
	The Rete Algorithm
	Semantic Web Application Platform
	cwm and cwmrete

	AIR
	Introduction
	A Brief AIR Tutorial
	Changes to the AIR language
	AIR Summary

	Summary

	Supporting Code
	MIT Prox Card Policy
	SSN Policy - Original Ontology
	SSN Policy - Current Ontology
	A sample SPARQL Query
	Abstract SPARQL to N3 Ontology
	Sample Restriction Policy
	Sample Inclusion Policy
	Sample Exclusion Policy
	Sample History-Aware Exclusion Policy
	Sample Chaining Policy
	Sample Default Deny Policy
	No-Address Restriction Policy for Sample Scenario

