
6.898 – Homework No. 4
By next class (Tuesday, October 12), all students should have done the following:

1. Use RDFS and OWL to express the following (assume a base URI of 
<http://www.example.com/ontology/life#>) in a valid RDF serialization:

“Some things are plants, others are animals, fungi, bacteria, archaea, or protists.  Any Living Thing 
must be one of these, and no Living Thing may be more than one of these.  Anything that is not a 
living thing is a non-living thing.  All living things may be identified in part by the number of cells 
they have, but all must have at least one.  Bacteria, Archaea, and Protists have exactly one cell. 

Animals, fungi, plants, and protists are all eukaryotes.  Things that are eukaryotes have a cell 
nucleus.  Non-eukaryotes do not.

All living things belong to a species.  Species may have many names, but are uniquely identified by 
no more than one scientific name (which is itself a name).  Species also have no more than one date 
that they were first described and no more than one person (a foaf:Person) who first described 
them.

Some animals are Tailed Animals.  Some animals are Legged Animals.  Some animals are Legged 
Tailed Animals (and thus both).  Any Legged Animal has a positive integral number of legs.”

2. Write and execute SPARQL queries to do the following.  Include the results of running the queries 
as a table (make sure to label your columns!).  You may wish to use a SPARQL query viewer like 
that at http://ccgi.arutherford.plus.com/website/flex/dbPedia/sparqlQueryViewer/ to formulate 
and execute your queries (remember to change the endpoint appropriately!)

a) Build an RDF graph that describes any actor in the movie “Avatar” as a member of a class 
<http://www.example.com/ont#AvatarActor>.  This RDF graph should include the names of the 
actors by using the foaf:name predicate.  Use the Linked Movie Database 
(http://www.linkedmdb.org/) to construct this query.  You may wish to look at some of the links 
under “Start Exploring” (especially “actor” and “film”) on that page to get an idea of the predicates 
you may want to use.

b) Get the name of all artists and their Icelandic-language albums which have been released in both 
Japan and the US.  Also get the artist's birth and death dates (if they exist). Use DBTune's 
MusicBrainz database (http://dbtune.org/musicbrainz/).  You may wish to look at some of the 
example links at the top of the page (especially “album”, “artist”, “release”, and “language”) to get 
an idea of the predicates you may want to use.

c) Get the URI, name, founding date, and stadium names of all Major League Baseball teams 
established before 1900 that are/were tenants of a stadium that opened on or after 2000 OR that 
were established on or after 1900 and are/were tenants of a stadium that opened before 2000.  This 
information may be found on DBPedia (http://dbpedia.org/).

A good place to start investigating predicates would be http://dbpedia.org/resource/Chicago_Cubs. 
Try to find the properties that give the name and founding date of the team and which property 
links to a resource that describes Wrigley Field, their stadium (where you should be able to find its 
opening date).  In order to limit your search to Major League Baseball teams, you'll also want to 
find out what class the Chicago Cubs belongs to that represents Major League Baseball teams.

Note that DBPedia is particularly “cluttered” in terms of alternate ways of phrasing the same fact 
(that may not actually be useful to you!).  You'll probably need to check several teams and stadiums 
to get a good idea of the best predicates to match the most teams.

DBPedia's SPARQL endpoint is http://dbpedia.org/sparql.
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3. What are these SPARQL queries trying to do?

a) 

PREFIX money: <http://telegraphis.net/ontology/money/money#>
PREFIX gn: <http://www.geonames.org/ontology#>
PREFIX geographis: <http://telegraphis.net/ontology/geography/geography#>
CONSTRUCT { ?l money:currency ?c ; gn:name ?y . ?c money:name ?x . } WHERE { {
?c money:name ?x ;

money:minorName “cent”@en ;
money:currencyOf ?l .

?l gn:name ?y .
} UNION {
?c money:name ?x ;

money:minorName “penny”@en ;
money:currencyOf ?l .

?l gn:name ?y ;
geographis:officialLanguage <http://www.lingvoj.org/lingvo/en> .

} }

b)

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
INSERT { ?p foaf:interest <http://dbpedia.org/resource/Linked_Data> . }
WHERE { {
?p a foaf:Person ;

foaf:interest <http://dig.csail.mit.edu/2010/Courses/6.898/> .
} UNION {
?g foaf:interest <http://dig.csail.mit.edu/2010/Courses/6.898/> .

foaf:member ?p .
} }

c)

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
DESCRIBE ?p WHERE { {
?d a foaf:PersonalProfileDocument ;

foaf:maker ?p .
?p a foaf:Person ;

foaf:age ?x ;
foaf:interest <http://dbpedia.org/resource/Linked_Data> .

?q foaf:knows ?p .
<http://www.w3.org/People/Berners-Lee/card#i> foaf:knows ?q .
FILTER ( ?x < “30”^^xsd:int )
} UNION {
?d a foaf:PersonalProfileDocument ;

foaf:maker ?p .
?p a foaf:Person ;

foaf:age ?x ;
foaf:interest <http://dbpedia.org/resource/Linked_Data> .

<http://www.w3.org/People/Berners-Lee/card#i> foaf:knows ?p .
FILTER ( ?x < “30”^^xsd:int )
} }
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In addition to the above tasks, we request that students provide another paragraph describing an 
idea for the Idea Bank.  These ideas should be of a potential application for linked data.

Short Paper: Homework groups are responsible for providing a short one-page paper that 
investigates the impact of linked data on the enterprise market.  You may consider packaged applications, 
tools, data suppliers, professional services or new business models

Backgrounder: Homework Group 4 is responsible for providing a backgrounder on Stephane 
Corlesquet and Drupal before next class.

Please remember to turn in all homework to the appropriate Stellar homework dropbox by 4:00PM 
Tuesday, October 12, except for the backgrounder, which should be submitted no later than 11:59PM 
Monday, October 11.  Stellar drop boxes will be made for each of the individual components of this 
assignment.


