SPARQL By ExampLE
A Tutorial

Lee Feigenbaum
VP Technology & Standards, Cambridge Semantics
Co-Chair, W3C SPARQL Working Group
Eric Prud’hommeaux
Sanitation Engineer, W3C
SPARQL, HCLS, RDB2RDF Working Groups

= Follow along at http://www.cambridgesemantics.com/2008/09/sparql-by-
example/.

= Companion "cheat sheet" at http://www slideshare.net/LeeFeigenbaum/spargl-
cheat-sheet.

= Last modified: 2010-05-23

= This work is licensed under a Creative Commons Attribution-Share Alike 3.0
Unported License, with attribution to Cambridge Semantics.

Wit f".'.';...j

hietpe/fwwawiwd.ongTalks/ Tools/Slidyheip.vmi

Cambridge
Semantics

slide 1/83

Why SPARQL?

SPARAQL is the query language of the Semantic Web. It lets us:

= Pull values from structured and semi-structured data

= Explore data by querying unknown relationships

= Perform complex joins of disparate databases in a single, simple query
= Transform RDF data from one vocabulary to another

et/ d.ongTalks/ Tools/Slidyheip.vmi

slide 2/83

Assumptions

RDF is a data model of graphs of subject, predicate, object triples.

(st) [prette | oot
Resources are represented with URIs, which can be abbreviated as prefixed names

Objects can be literals: strings, integers, booleans, etc.
Turtle: a bit of syntax

e URIs: <http://example.com/resource> Of prefix:name

L]

Literals: "plain string" "13.4"44xsd:float OF "string with language"@en

Triple: pref:subject other:predicate "object" .

L]

More shortcuts & abbreviations as we go.

slide 3/83

Structure of a SPARQL Query

A SPARQL query comprises, in order:

Prefix declarations, for abbreviating URIs

Dataset definition, stating what RDF graph(s) are being queried

A result clause, identifying what information to return from the query

The query pattern, specifying what to query for in the underlying dataset
Query modifiers, slicing, ordering, and otherwise rearranging query results

prefix declarations
PREFIX foo: <http://example.com/resources/>

dataset definition

FROM ...

result clause
SELECT ...

query pattern
WHERE {

}
query modifiers
ORDER BY ...

slide 4/83 -

SPARQL Architecture & Endpoints

slide 5/83

SPARQL Landscape

SPARQL 1.0 became a standard in January, 2008, and included:

SPARQL 1.0 Query Language
SPARQL 1.0 Protocol
SPARQL Results XML Format

SPARQL 1.1 is in-progress, and includes:

Updated 1.1 versions of SPARQL Query and SPARQL Protocol
SPARAQL 1.1 Update

SPARQL 1.1 Uniform HTTP Protocol for Managing RDF Graphs
SPARQL 1.1 Service Descriptions

SPARQL 1.1 Entailments

SPARQL 1.1 Basic Federated Query

slide 6/83

Dataset: Friend of a Friend (FOAF)

» FOAF is a standard RDF vocabulary for describing people and relationships
= Tim Berners-Lee's FOAF information available at http://www.w3.0org/People/Berners-Lee/card
= For our first query, let's find all the names of people mentioned in Tim's FOAF file:

@prefix card: <http://www.w3.org/People/Berners-Lee/card#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

card:i foaf:name ["Timothy Berners-Lee"

<http://bblfish.net/people/henry/cardfime> foaf:name "Henry Story"| .
<http://www.cambridgesemantics.com/people/about/lee> foaf:name "Lee Feigenbaum'| .
card:amy foaf:name ["Amy wvan der Hiel"i.

slide 7/83

Query #1: SELECT, variables, and a triple pattern

In the graph nttp://www.w3.org/People/Berners-Lee/card, find me all subjects (?pexrson) and objects (?
name) linked with the foaf :name predicate. Then return all the values of ?name. In other words, find all names
mentioned in Tim Berners-Lee's FOAF file.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE {

?person foaf:name ?name .

}

» SPARQL variables start with a 2 and can match any node (resource or literal) in the RDF dataset.

= Triple patterns are just like triples, except that any of the parts of a triple can be replaced with a variable. Iy
= The seLeEcT result clause returns a table of variables and values that satisfy the query.

= Dataset. http://www.w3.org/People/Berners-Lee/card

slide 8/83

Running Our First Query

» This query is against an arbitrary bit of RDF data (Tim Berners-Lee's FOAF file). So we need a generic
endpoint to run it. We can choose from:

e Opendena's ARQ at sparql.org
e OpenLink's Virtuoso (Make sure to choose "Retrieve remote RDF data for all missing source graphs")
e Redland's Rasqal.

= Each endpoint provides a form for us to input the query and the data graph. Results are returned as an HTML

table.
= Dataset. http://www.w3.org/People/Berners-Lee/card

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT 7?name
WHERE {

?person foaf:name 7?name .

}

Try it yourselfl (Expected resulis.)

slide 9/83

Exercise #1: Give me all the properties about Apollo 7

Given:

= Talis endpoint <http://api.talis.com/stores/space/items/tutorial/spared.htmi>.
= Apollo 7 known as <http://nasa.dataincubator.org/spacecraft/1968-089A>.

slide 10/83

Solution #1: Give me all the properties about Apollo 7

SELECT 7?p 2o

{
<http://nasa.dataincubator.org/spacecraft/1968-089A> ?p 2o

}

(query)

help? contents? restart? slide 11/83
Query #2: Multiple triple patterns: property retrieval
Find me all the people in Tim Berners-Lee's FOAF file that have names and email addresses. Return each
person's URI, nhame, and email address.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT *
WHERE {
?person Efoaf:na.meé ?name .
?person foaf:mbox ?email .
}
= We can use multiple triple patterns to retrieve multiple properties about a particular resource
= Shortcut: seLECT * selects all variables mentioned in the query
= Dataset: http://www.w3.org/People/Berners-Lee/card
Try it with ARQ, OpenLink's Virtuoso, or Redland's Rasqal. (Expected results.) b
slide 12/83

help? contents? restart?

Exercise #2: URLs for Apollo 7

What URL does this database use for Apollo 77
What is the (NASA) homepage for the mission?

Given the Talis endpoint:

» uses foaf for names and homepages.
» namespace for foaf is <http://xmins.com/foaf/0.1/>

slide 13/83

Solution #2: URLs for Apollo 7

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?craft ?homepage
{

?craft foaf:name "Apollo 7" .

?craft foaf:homepage ?Zhomepage
}

(query)

i

help? contents? restart?

slide 14/83

Query #3: Multiple triple patterns: traversing a graph

Find me the homepage of anyone known by Tim Berners-Lee.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX card: <http://www.w3.org/People/Berners-Lee/card#>
SELECT Z?homepage
FROM <http://www.w3.org/People/Berners-Lee/card>
WHERE {
card:i foaf:knows ?known .
j_?known foaf: homepdige ?homepage .

= The rFroM keyword lets us specify the target graph in the query itself.
= By using ?known as an object of one triple and the subject of another, we traverse multiple links in the graph.

" cardi) >(7known > ?homepage
= " foafknows - >I‘naf:homepage &

Try it with ARQ, OpenLink's Virtuoso, or Redland's Rasqal. (Expected results.)

help? contents? restart? slide 15/83

Exercise #3: What was the point of Apollo 77

Given, the Talis endpoint:

= Apollo 7 known as <http://nasa.dataincubator.org/spacecraft/1968-089A>.
= associates missions with space:discipline.
= labels things with rdfs:label.

slide 16/83

Solution #3: What was the point of Apollo 7?

PREFIX space: <http://purl.org/net/schemas/space/>

PREFIX rdfs: <http://www.w3.o0rg/2000/01/rdf-schema#>

SELECT ?disc ?label

{
<http://nasa.dataincubator.org/spacecraft/1968-089A> space:discipline ?disc .
?disc rdfs:label ?label

}

(query)

help? contents? restart? slide 17/83

Dataset: DBPedia

» DBPedia is an RDF version of information from Wikipedia.

= DBPedia contains data derived from Wikipedia's infoboxes, category hierarchy, article abstracts, and various
external links.

= DBpedia contains over 100 million triples.

help? contents? restart? slide 18/83

Query #4: Exploring DBPedia

Find me 50 example concepts in the DBPedia dataset.

SELECT DISTINCT %concept

WHERE {
?s a ?concept .
} LIMIT 50|

Try it with a DBPedia-specific SPARQL endpoint. (Expected results.)

slide 19/83

Exercise #4: Find 50 Spacecraft

Given:

= namespace for space <http://purl.org/net/schemas/space/>
= spacecraft are called space:Spacecraft

slide 20/83

Solution #4: Find 50 Spacecraft

PREFIX space: <http://purl.org/net/schemas/space/>
SELECT “?craft

{

?craft a space:Spacecraft

}
LIMIT 50

(query)

help? contents? restart? slide 21/83

Query #5: Basic SPARQL filters

Find me all landlocked countries with a population greater than 15 million.

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX type: <http://dbpedia.org/class/yago/>
PREFIX prop: <http://dbpedia.org/property/>
SELECT ?country name ?population
WHERE {
?country a type:LandlockedCountries ;
rdfs:label ?country name ;
prop:populationEstimate ?population .
FILTER (?population > 15000000)| .

= FILTER constraints use boolean conditions to filter out unwanted query results.

= Shortcut: a semicolon (;) can be used to separate two triple patterns that share the same subject. (?country
is the shared subject above.)
» rdfs:label is @a common predicate for giving a human-friendly label to a resource.

= Note all the translated duplicates in the results. How can we deal with that?

Try it with one of DBPedia's SPARQL endpoint. (Expected results.)

help? contents? restart? slide 22/83

Exercise #5: Find launches in October 1968

Given, the Talis endpoint:

= namespace for space <http://purl.org/net/schemas/space/>

= the range of space:launched is xse:date

= Uuses xse:date to say when a craft was launched.

= namespace for xsd is <http://www.w3.0org/2001/XMLSchema>

slide 23/83

Solution #5: Find launches in October 1968

PREFIX space: <http://purl.org/net/schemas/space/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT *
{ ?launch space:launched 7?date
FILTER (
?date > "1968-10-1""*"xsd:date &&
?date < "1968-10-30"**xsd:date

(query)

help? contents? restart? slide 24/83

SPARQL built-in filter functions

» logical: 1, &&, ||

= Math: +, -, *, /

= Comparison: =, 1=, > <, ...

= SPARQL tests: isURI, isBlank, isLiteral, bound
= SPARQL accessors: str, lang, datatype

= Other: sameTerm, langMatches, regex

help? contents? restart? slide 25/83

Query #6: Filters for picking among translations

Find me all landlocked countries with a population greater than 15 million (revisited), with the highest population
country first.

PREFIX type: <http://dbpedia.org/class/vago/>
PREFIX prop: <http://dbpedia.org/property/>
SELECT ?country name ?population
WHERE {
?country a type:LandlockedCountries ;
rdfs:label ?country name ;
prop:populationEstimate ?population . D
FILTER (?population > 15000000 && !langMatches(lang(?country name) , "EN")|)
} ORDER BY DESC (?population)

» lang extracts a literal's language tag, if any
= langMatches matches a language tag against a language range

Try it with a DBPedia-specific SPARQL endpoint. (Expected results.)

help? contents? restart? slide 26/83

Dataset: Jamendo

slide 27/83

Query #7a: Finding artists’ info - the wrong way

Find all Jamendo artists along with their image, home page, and the location they're near.

PREFIX mo: <http://purl.org/ontology/mo/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?img ?hp ?loc
WHERE {
?a a mo:MusicArtist ;
foaf:name ?name ;
foaf:img ?img ;
foaf:homepage ?hp ;
foaf:based near ?loc .

= Jamendo has information on about 3,500 artists.
= Trying the query, though, we only get 2,667 results. What's wrong?

Try it with DBTune.org's Jamendo-specific SPARQL endpoint. Be sure to choose SPARQL rather than SeRQL.
(Expected results.)

help? contents? restart? slide 28/83

Query #7b: Finding artists' info - the right way

Find all Jamendo artists along with their image, home page, and the location they're near, if any.

PREFIX mo: <http://purl.org/ontology/mo/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?img ?hp ?loc
WHERE {
?a a mo:MusicArtist ;

foaf:name ?name .
OPTIONAL { ?a foaf:img ?img }
OPTIONAL { ?7a foaf:homepage 7hp }
OPTIONAL { ?a foaf:based near ?loc }

= Not every artist has an image, homepage, or location!
= OPTIONAL tries to match a graph pattern, but doesn't fail the whole query if the optional match fails.

= |f an oPTIONAL pattern fails to match for a particular solution, any variables in that pattern remain unbound (no
value) for that solution.

Try it with DBTune.org's Jamendo-specific SPARQL endpoint. Be sure to choose SPARQL rather than SeRQL.
(Expected results.)

slide 29/83 ~

Dataset: HCLS Knowledge Base at DERI Galway

= Over 404 million triples

» |argest chunk: mirror of the "Neurocommons Knowledge Base" created by Science Commons

= Additional datasets added in recent year by members of the W3C Health Care and Life Science Interest Group

= Wide range of data: biomedical publications, molecular biology, neuroscience, pharmacology, clinical trials of
new drugs, and more

help? contents? restart? slide 30/83

Query #8: Querying alternatives

Find me the cellular processes that are either integral to or a refinement of signal transduction.

PREFIX go: <http://purl.org/obo/owl/GO#>

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

PREFIX obo: <http://www.obofoundry.org/ro/ro.owl#>

SELECT DISTINCT ?label ?process

WHERE {
{ ?process obo:part of go:GO 0007165 } # integral to

UNION

{ ?proces.s rdfs:subClassOf go:GO_0007165 } # refinement of
?process rdfs:label ?label

} b

= The unrown keyword forms a disjunction of two graph patterns. Solutions to both sides of the unIoN are
included in the results.
» The URl go:Go_0007165 is the identifier for signal transduction in the Gene Ontology

= N.B. Cell-surface-receptor-linked signal transduction is a refinement (subclass) of signal transduction

Try it with the HCLS knowledgebase SPARQL endpoint. (Expected results.)

help? contents? restart? slide 31/83

RDF Datasets

» We said earlier that SPARQL queries are executed against RDF datasets, consisting of RDF graphs.

= So far, all of our queries have been against a single graph. In SPARQL, this is known as the default graph.

= RDF datasets are composed of the default graph and zero or more named graphs, identified by a URI.

= Named graphs can be specified with one or more FroM NaAMED clauses, or they can be hardwired into a
particular SPARQL endpoint.

» The SPARQL crarH keyword allows portions of a query to match against the named graphs in the RDF
dataset. Anything outside a GraPH clause matches against the default graph.

slide 32/83

RDF Datasets

PREFIX g: <http://data.example.com/graphs/>

PREFIX ex: <...> ‘Jg Default Graph

SELECT *

FROM<...>

FROM NAMED g:gl e

FROM NAMED g:g2 7 N

FROM NAMED g:g3 (4 N

WHERE{ \)
?sex:plex:ol;explexo02.” _— = o
GRAPHg:g1{?sex:p3ex:03} _ http/data com/graphs/gl
GRAPH 7g { 2 V.

/ \
ex:slex:pd ?s. ~ (\ >_
ex:s1 ex:p5 ex:05 . N L / Named Graphs

} W X

} - . http://data.example.com/graphs/g2
i 7
{ \

'. ‘% 4

\)
o

http://data le.com/graphs/g3

help? contents? restart?

slide 33/83

Dataset: semanticweb.org

Semantic Web (ISWC) and European Semantic Web Conference (ESWC) series of events.

= Presents data via FOAF, SWRC, and iCal ontologies.

= The data for each individual ISWC or ESWC event is stored in its own named graph; that is, there is one
named graph per conference event contained in this dataset.

help? contents? restart?

data.semanticweb.org hosts RDF data regarding workshops, schedules, and presenters for the International

slide 34/83

Query #9: Querying named graphs

Find me people who have been involved with at least three ISWC or ESWC conference events.

SELECT DISTINCT ®?person

WHERE {
?person foaf:name 7?name .
GRAPH ?g1 { ?person a foaf:Person }
GRAPH ?g2 { ?person a foaf:Person }

GRAPH ?g3 { ?person a foaf:Person }
FILTER(?gl !'= ?g2 && ?gl '= ?g3 && ?g2 '= ?g3)

» The GRAPH 2g construct allows a pattern to match against one of the named graphs in the RDF dataset. The
URI of the matching graph is bound to 2g (or whatever variable was actually used).

= N.B. The FILTER assures that we're finding a person who occurs in three distinct graphs.
» N.B. The Web interface we use for this SPARQL query defines the foaf: prefix, which is why we omit it here.

Try it with the data.semanticweb.org SPARQL endpoint. (Expected results.)

help? contents? restart? slide 35/83

Query #10: Tranforming between vocabularies

Convert FOAF data to VVCard data.

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
CONSTRUCT {
?¥X vCard:FN ?name .
?X vCard:URL 7?url .
?X vCard:TITLE ?title .
(}
FROM <http://www.w3.org/People/Berners-Lee/card>

WHERE {
OPTIONAL { ?X foaf:name ?name . FILTER isLiteral (?name) . }
OPTIONAL { ?X foaf:homepage ?url . FILTER isURI(?url) . } R

OPTIONAL { ?X foaf:title ?title . FILTER isLiteral(?title) . }

slide 36/83 -~

Query #11: ASKing a question

Is the Amazon river longer than the Nile River?

<http://dbpedia.org/resource/Amazon River> prop:length Zamazon .

<http://dbpedia.org/resource/Nile> prop:length ?nile .
FILTER (?amazon > ?nile)

Try it with the Virtuoso DBPedia SPARQL endpoint. (Expected results. - or are they??)

slide 37/83

Dataset: EDGAR Corporate Ownership Data

slide 38/83

Query #12: Learning about a resource

Tell me whatever you'd like to tell me about the Ford Motor Company.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
DESCRIBE ?fo]:'d1I WHERE {
?ford foaf:name "FORD MOTOR CO" .

}

= The DESCRIBE query result clause allows the server to return whatever RDF it wants that describes the given
resource(s).
» Because the server is free to interpret DESCRIBE as it sees fit, DESCRIBE queries are not interoperable.

= Common implementations include concise-bounded descriptions, named graphs, minimum self-contained
graphs, and more.

Try it with the EDGAR-specific SPARQL endpoint. (Expected results.)

help? contents? restart? slide 39/83

What's new in SPARQL 1.1 Query?

A new SPARQL WG was chartered in March 2009 to extend the SPARQL language and landscape. SPARQL 1.1
Query includes these extensions:
» Projected expressions. SPARQL 1.1 Query adds the ability for query results to contain values derived from
constants, function calls, or other expressions in the SELECT list.
= Aggregates. SPARQL 1.1 Query adds the ability to group results and calculate aggregate values (e.g. count,
min, max, avg, sum, ...).
= Subqueries. SPARQL 1.1 Query allows one query to be embedded within another.
= Negation. SPARQL 1.1 Query includes improved language syntax for querying negations.
= Property paths. SPARQL 1.1 Query adds the ability to query arbitrary length paths through a graph via a
regular-expression-like syntax known as property paths.
» Basic federated query. SPARQL 1.1 Query defines a mechanism for splitting a single query among multiple
SPARQL endpoints and combining together the results from each.

help? contents? restart? slide 40/83

Query #13: Projected Expressions

How many neutrons does the most common isotope of each element have?

PREFIX fn: <http://www.w3.org/2005/xpath-functions#>
PREFIX : <http://www.daml.org/2003/01/periodictable/PeriodicTable#>
SELECT ?element ?protons !(fn:round(?weight) - ?protons AS ?neutrons)!
FROM <http://www.daml.org/2003/01/periodictable/PeriodicTable.owl>
WHERE {
[1] a :Element ;

:atomicNumber ?protons ;

:atomicWeight ?weight ;

:name ?element .
} ORDER BY ?protons

= Projected expressions allows for arbitrary expressions to be used for columns in a query's result set.

= Projected expressions must be in parentheses and must be given an alias using the as keyword.
= Note: [] in a query acts as an unnamed variable.

Try it with spargl.org. (Expected results.)

help? contents? restart?

slide 41/83

Dataset: UK Government Data

slide 42/83

Query #14: Aggregates

How many roads of each classification are there in the UK?

PREFIX skos: <http://www.w3.0rg/2004/02/skos/core#>
PREFIX roads: <http://transport.data.gov.uk/0/ontology/roads#>
SELECT ?cat_name!(COUNT(DISTINCT ?thing) AS %?roads)
WHERE { '
?thing a roads:Road ; roads:category ?cat .
?cat skos:preflabel ?cat name

}
GROUP BY ?cat name

Aggregate queries post-process query results by dividing the solutions into groups, and then performing
summary calculations on those groups.

As in SQL, the crouP BY clause specifies the key variable(s) to use to partition the solutions into groups.

SPARQL 1.1 defines these aggregate functions: COUNT, MIN, MAX, SUM, AVG, GROUP CONCAT, SAMPLE
SPARQL 1.1 also includes a HAVING clause to filter the results of the query after applying aggregates.

Try it with the data.gov.uk endpoint. Make sure to choose the Transport dataset. (Expected results.

slide 43/83

help? contents? restart?

Query #15a: Limit Per Resource Without Subqueries

Retrieve the second page of hames and emails of people in Tim Berners-Lee's FOAF file, given that each page

has 10 people.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?email
FROM <http://www.w3.org/People/Berners-Lee/card>

WHERE {
?person foaf:name ?name .
OPTIONAL { ?person foaf:mbox 7?email }
} ORDER BY “?name LIMIT 10 OFFSET 10

= Simple--just use the LIMIT and oFFSET clauses to get the second set of ten.

» Tryit with ARQ. (Expected results.)
= How many rows are in the results? But how many people are in the results?

slide 44/83

help? contents? restart?

Query #15b: Limit Per Resource With Subqueries

Retrieve the second page of hames and emails of people in Tim Berners-Lee's FOAF file, given that each page
has 10 people.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?email
FROM <http://www.w3.org/People/Berners-Lee/card>
WHERE {
{
SELECT DISTINCT ?person ?7name WHERE {
?person foaf:name ?name
} ORDER BY ?name LIMIT 10 OFFSET 10

}
OPTIONAL { ?person foaf:mbox ?email }

slide 45/83

Query #16a: Negation In SPARQL 1.0

Find the person entries in Tim Berners-Lee's FOAF file that do not contain a URL for the person's FOAF file.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
SELECT ?name
FROM <http://www.w3.org/People/Berners-Lee/card>
WHERE {

?person a foaf:Person ; foaf:name ?name .

OPTIONAL { ?person rdfs:seeAlso ?url }

FILTER (!bound(?url))
}

= Negation in SPARQL 1.0 was done using oPTIONAL, the bound filter, and the logical-not operator.
= The oPTIONAL clause binds a variable in cases we want to exclude, and the filter removes those cases.

= This is awkward at best.
= Tryit with ARQ. (Expected results.)

slide 46/83

Query #16b: Negation In SPARQL 1.1 (Part 1)

Find the person entries in Tim Berners-Lee's FOAF file that do not contain a URL for the person's FOAF file.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
SELECT ?name
FROM <http://www.w3.org/People/Berners-Lee/card>
WHERE {

?person a foaf:Person ; foaf:name ?name .

MINUS { ?person rdfs:seeAlso ?url }

}

« SPARQL 1.1 includes a MINUs graph pattern clause: a binary operator that removes bindings that match the

right-hand side.
= No publicly deployed endpoints support MINUS, yet!

help? contents? restart? slide 47/83

Query #16¢: Negation In SPARQL 1.1 (Part 2)

Find the person entries in Tim Berners-Lee's FOAF file that do not contain a URL for the person's FOAF file.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
SELECT ?name
FROM <http://www.w3.org/People/Berners-Lee/card>
WHERE {

?person a foaf:Person ; foaf:name ?name .

FILTER (NOT EXISTS { ?person rdfs:seeAlso ?url })]

}

» SPARQL 1.1 includes a NoT Ex1sTs filter that uses the bindings from a solution to test whether or not a given

graph pattern exists.
= |n most cases, negation can be done with either MINUS or NOT EXISTS -- there are some differences in edge

cases, though!
= Tryit with ARQ. (Expected results.)

slide 48/83

help? contents? restart?

Query #17a: Finding Beers

Find all of the beers included in the beer ontology.

PREFIX beer: <http://www.purl.org/net/ontology/beer#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema$#>
SELECT ?beer
FROM <http://www.purl.org/net/ontology/beer>
WHERE {

?beer rdf:type beer:Beer .

}

= Simple--just find all resources of the beer type.

» Tryit with ARQ. (Expected results.)

= Why do we get no results?

» The beer ontology makes heavy use of inferences; nothing is explicitly typed as a beer :Beer.

help? contents? restart? slide 49/83

Query #17b: Finding Beers, Revisited

Find all of the beers included in the beer ontology.

PREFIX beer: <http://www.purl.org/net/ontology/beer#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema$#>
SELECT ?beer
FROM <http://www.purl.org/net/ontology/beer>
WHERE {

?beer [rdf:type/rdfs:subClassOf* beer:Beer .

}

» Property paths let us query for arbitrary-length paths through the dataset graphs.
» Property paths reuse syntax from regular expressions.
» Tryit with ARQ. (Expected results.)

slide 50/83

Query #18: Federate Data From Two Endpoints

Find the birth dates of all of the actors in Star Trek: The Motion Picture

PREFIX movie: <http://data.linkedmdb.org/resource/movie/>

PREFIX dbpedia: <http://dbpedia.org/ontology/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?7actor name ?birth_date

FROM <http://www.w3.org/People/Berners-Lee/card> # placeholder graph
WHERE {

SERVICE <http://data.linkedmdb.org/sparql>| {
<http://data.linkedmdb.org/resource/film/675> movie:actor ?actor .
?actor movie:actor name Zactor name

}

ISERVICE <http://dbpedia.org/spargl> {

FILTER(STR(?actor_name_ en) = ?actor name)

}
}

= The sERVICE keyword is used to send part of a query against a remote SPARQL endpoint.

= Note: SPARQL 1.1 defines a mechanism to communicate results from one endpoint to another, but this is not
currently widely deployed.

= The FILTER is necessary because names in dbpedia have language tags, while names in LinkedMDB do not.

= Try it with ARQ. (Expected results.)

?actor2 a dbpedia:Actor ; foaf:name ?actor name en ; dbpedia:birthDate ?7birth_date .

slide 51/83 [x

What else is new in SPARQL 1.1?

The new SPARQL WG is also extending the SPARQL landscape with:

slide 52/83

SPARQL 1.1 Update

SPARQL 1.1 Update is a language for managing and updating RDF graphs.

= INSERT DATA { triples }

» DELETE DATA { triples }

= [DELETE { template }][INSERT { template } |WHERE { pattern }
» LOAD uri[INTO GRAPH uri]

= CLEAR GRAPH uri

» CREATE GRAPH uri

= DROP GRAPH uri

slide 53/83

SPARQL 1.1 Uniform HTTP Protocol for Managing RDF
Graphs

The SPARQL 1.1 Uniform HTTP Protocol defines how to use RESTful HTTP requests to affect an RDF graph store.
Some examples:
= HTTP put of RDF data to a URI v means:

DROP GRAPH u;
CREATE GRAPH u;
INSERT DATA { GRAPH u { ... RDF payload ... } }

= HTTP pELETE to a URI v means:
DROP GRAPH u

= HTTP posT of RDF data to a URI v means:
INSERT DATA { GRAPH u { ... RDF payload ... } }

= HTTP ceET to 2a URI v means:
CONSTRUCT { ?s ?p %0 } WHERE { GRAPH u { ?s ?p %0 } }

slide 54/83

SPARQL 1.1 Service Description

The SPARQL 1.1 Service Description defines a discovery mechanism and vocabulary for describing the capabilities
and data available at a SPARQL endpoint.

» Discovery. A service description is retrieved by doing an HTTP GeT on the endpoint's URL. It may be returned

as RDFa or any other RDF serialization.
= Vocabulary. The SPARQL 1.1 Service Description vocabulary describes functions, aggregates, features,
graphs, entailment regimes, property functions, result formats, and more.

slide 55/83

What's missing from SPARQL?

Even with the ongoing SPARQL 1.1 work, there are several other pieces of the SPARQL landscape that are not yet
standardized, including:

» Full-text search. How is keyword/key-phrase search integrated with SPARQL queries?

» Parameters. How can initial bindings be supplied to a SPARQL endpoint along with the query itself?

» Querying "all" named graphs. Is there a standard way to ask that a SPARQL query be run against all the

graphs that a SPARQL endpoint knows about?
» SPARQL in XML and RDF. Several toolsets make use of XML- or RDF-based serializations of SPARQL

queries.
The W3C ESW wiki lists more SPARQL extensions.

help? contents? restart? slide 56/83

Query #19: SPARQL extension: free-text search

Find me countries with 'Republic' in their name that were established before 1920.

PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX type: <http://dbpedia.org/class/yago/>
PREFIX prop: <http://dbpedia.org/property/>
SELECT ?1bl ?est
WHERE {

?country rdfs:label ?1bl .

FILTER (bif:contains (?1bl, "Republic")ﬁ

?country a type:Countryl08544813 ;

prop:establishedDate %?est .
FILTER (?est < "1920-01-01"**xsd:date && langMatches(lang(?1bl), "EN"))

}

» Openlink's Virtuoso uses an extension filter function, bif:contains to filter literal values against a free-text
index. Other implementations use other techniques.

Try it with the Virtuoso DBPedia SPARQL endpoint. (Expected results.)

help? contents? restart? slide 57/83

Acknowledgements

'The following people helped contribute queries, datasets, SPARQL endpoints, or other content used in this tutorial.
Many thanks to all.
= Dean Allemang
» Tim Berners-Lee (FOAF data)
» data semanticweb.org team - Sean Bechhofer, Richard Cyganiak, Tom Heath, Knud Méller
(data.semanticweb.org)
= Frithjof Dau
= Leigh Dodds
= Francois Dongier
= DBpedia team - Séren Auer, Chris Bizer, Richard Cyganiak, Orri Erling, Kingsley Idehen, Georgi Kobilarov,
Jens Lehmann, Jérg Schippel
» Kingsley Idehen
= Axel Polleres
= Eric Prud'hommeaux
» Yves Raimond (Jamendo)
» Francois Scharffe
= Joshua Tauberer
= Greg Wiliams

slide 58/83 -~

SPARQL Resources

» The SPARQL specification

= SPARQL Frequently Asked Questions

= SPARQL implementations - community maintained list of open-source and commercial SPARQL engines
= Public SPARQL endpoints - community maintained list

= SPARQL extensions - collection of SPARQL extensions implemented in various SPARQL engines

= Using SPARQL to explore an unknown dataset - courtesy of Dean Allemang

= SPARQL By Example - this presentation

help? contents? restart?

slide 59/83

Thanks!

If you have any questions, please email Lee Feigenbaum at lee@cambridgesemantics.com.

help? contents? restart?

slide 60/83

