
BUILDING A LINKED DATA APP
Libraries, Tools, and Tips for Making a Working App



THINGS TO KNOW ABOUT 
MAKING A LINKED DATA APP

• Code libraries you can use

• Utilities that can help think through what code you need

• Linked data sources that might prove valuable

• Finally, putting it all together with a small demo app



FIRST STEPS:
CHOOSING YOUR LIBRARY

• Almost any language has an RDF library...

• Redland, Raptor, and Rasqal (C, with bindings for many others)

• Jena (Java)

• RDFLib (Python)

• ARC (PHP)



REDLAND, RAPTOR, RASQAL

• Probably the most fully featured library set, and one of the 
longest in development.

• Redland handles storage, retrieval.
• Raptor parses RDF.
• Rasqal handles SPARQL queries (but not SPARQL/Update!).

• Straightforward C API.

• Bindings for (among others) Perl, Python, PHP, Ruby, C#, 
Objective-C



JENA

• Jena is the standard Java RDF library.

• Supports SPARQL and SPARUL with ARQ library.

• More oriented towards reasoning.

• Pellet, an OWL reasoner, depends on Jena and can be used 
from other Java code.

• D2RQ, a relational database to semantic web mapping engine 
also uses Jena.



RDFLIB

• Python library with native-components

• Somewhat easier to use than Redland bindings

• Doesn’t natively support SPARQL, but can query SPARQL 
Endpoints using it and another library.

• Supports several backends, including Redland.



ARC2

• A PHP-native library that supports MySQL backend.

• Can just drop in and import into existing PHP code without 
compilation (like Redland).

• Supports SPARQL, SPARQL+, and use of endpoints as 
alternate storage.

• Can be slightly constricting with advanced SPARQL queries.

• My example app will use this.



HELPFUL UTILITIES AND TIPS

• The W3C RDF Validation service is useful to check RDF/XML.

• Use cwm or rapper (part of Raptor) to validate your N3 
syntax. 

• Use a Linked Data browser, like Tabulator, to check your data.

• Run your SPARQL queries against the endpoint to make sure 
they work.

• Make sure you clean your data! (Especially from DBPedia!)



HELPFUL LINKED DATA 
SOURCES

• sameas.org: Provides comprehensive owl:sameAs links.

• DBPedia: Pretty much any Wikipedia topic has a DBPedia 
resource, with most of the data from templates extracted.

• Geonames: Invaluable pointers and descriptors for geographic 
locations.

• prefix.cc: Common prefixes for vocabularies.

• There are a number of sources that tap into other domains. 
Feel free to ask.



A SAMPLE APP

• MusicBrainz is a useful music database with linked data 
endpoints.

• While it now has tags for artists, albums, and labels, it doesn’t 
have explicit genres, and is less detailed.

• DBPedia has useful groupings of genres, and links to artists, but 
lacks MusicBrainz’s breadth of albums.

• Why not link the two?



THE PROBLEM: PART A

• Use DBTune, DBPedia, and any other sources you can think of 
to get a list of artists on DBTune (and their MusicBrainz ID, 
see mo:musicbrainz) when provided a DBPedia genre.

• List genre URIs for an artist when provided a MusicBrainz ID.



THE PROBLEM: PART B

• Extend the program to flesh out the “artist” and “genre” descriptions.

• Artists should have a short description, the instruments they play, the 
actual NAMES of the genres, birth and/or death dates, and the years they 
were active.

• Artists should also list their albums, with release dates, number of tracks, 
and Amazon links.

• Genres should have the years they were popular, a short description, and 
link to any related genres (e.g. subgenres, derivatives, stylistic origins, and 
those genres for which it is a subgenre/derivative/stylistic origin)



THE PROBLEM: PART C

• Surprise me!

• Do something else exciting with your program when I provide 
an artist or genre.



STEP 1: ARTIST PAGES

• Started by pulling information from DBTune (which hosts a 
MusicBrainz endpoint)

• Also queried for albums.

• http://www.telegraphis.net/demoapps/music/artist1.php

• Source:
http://www.telegraphis.net/demoapps/music/artist1.phps

http://www.telegraphis.net/demoapps/music/artist1.php
http://www.telegraphis.net/demoapps/music/artist1.php
http://www.telegraphis.net/demoapps/music/artist1.phps
http://www.telegraphis.net/demoapps/music/artist1.phps


STEP 2: LINK THAT DATA!

• DBTune’s MusicBrainz resource has owl:sameAs links to 
DBPedia.

• Use those to query DBPedia for more information, like genres.

• http://www.telegraphis.net/demoapps/music/artist2.php

• Source:
http://www.telegraphis.net/demoapps/music/artist2.phps

http://www.telegraphis.net/demoapps/music/artist2.php
http://www.telegraphis.net/demoapps/music/artist2.php
http://www.telegraphis.net/demoapps/music/artist2.phps
http://www.telegraphis.net/demoapps/music/artist2.phps


STEP 3: BRING ON THE 
GENRES

• Now that we have genres, we can build genre pages.

• Modified artist pages to link to genre pages.

• Constructed genre pages by querying DBPedia for data and 
artists.

• Then used sameas.org to get DBTune URIs (could have 
queried DBTune to do the same)

• Queried DBTune for the number of albums per artist.



STEP 3: BRING ON THE 
GENRES

• http://www.telegraphis.net/demoapps/music/artist3.php
http://www.telegraphis.net/demoapps/music/genre1.php

• Source:
http://www.telegraphis.net/demoapps/music/artist3.phps
http://www.telegraphis.net/demoapps/music/genre1.phps

http://www.telegraphis.net/demoapps/music/artist3.php
http://www.telegraphis.net/demoapps/music/artist3.php
http://www.telegraphis.net/demoapps/music/genre1.php
http://www.telegraphis.net/demoapps/music/genre1.php
http://www.telegraphis.net/demoapps/music/artist3.phps
http://www.telegraphis.net/demoapps/music/artist3.phps
http://www.telegraphis.net/demoapps/music/genre1.phps
http://www.telegraphis.net/demoapps/music/genre1.phps


AND ONWARD!

• Obvious next steps include styling and some other data fields.

• Cleaning up bad data...

• Final result at:
http://www.telegraphis.net/demoapps/music/artist.php
http://www.telegraphis.net/demoapps/music/genre.php

• Source:
http://www.telegraphis.net/demoapps/music/artist.phps
http://www.telegraphis.net/demoapps/music/genre.phps

http://www.telegraphis.net/demoapps/music/artist.php
http://www.telegraphis.net/demoapps/music/artist.php
http://www.telegraphis.net/demoapps/music/genre.php
http://www.telegraphis.net/demoapps/music/genre.php
http://www.telegraphis.net/demoapps/music/artist.phps
http://www.telegraphis.net/demoapps/music/artist.phps
http://www.telegraphis.net/demoapps/music/genre.phps
http://www.telegraphis.net/demoapps/music/genre.phps


SO HOW LONG DID IT TAKE?

• Relatively straightforward to improve from here...

• This only took me 3 hours to put together through the third 
revision, including time looking up documentation.

• Probably faster (hour and a half?) for PHP programmers
(I haven’t done so for some time!)



LIBRARY LINKS

• Redland: http://www.librdf.org/

• Jena: http://jena.sourceforge.net/

• RDFLib: http://www.rdflib.net/
(http://sparql-wrapper.sourceforge.net/ for a Python-based SPARQL endpoint wrapper)

• ARC2: http://arc2.semsol.net/

• ActiveRDF (for Ruby): http://www.activerdf.org/

http://www.librdf.org
http://www.librdf.org
http://jena.sourceforge.net
http://jena.sourceforge.net
http://www.rdflib.net
http://www.rdflib.net
http://sparql-wrapper.sourceforge.net
http://sparql-wrapper.sourceforge.net
http://arc2.semsol.net
http://arc2.semsol.net
http://www.activerdf.org
http://www.activerdf.org


MORE HELPFUL LINKS

• cwm: http://www.w3.org/2000/10/swap/doc/cwm.html

• W3C RDF/XML Validator: http://www.w3.org/RDF/Validator/

• Tabulator is available on the course resource page:
http://dig.csail.mit.edu/2010/LinkedData/res.html

• IRC channel #swig on irc.freenode.net has plenty of semantic 
web gurus from around the world to help out with questions

• ESW Wiki: http://esw.w3.org/topic/FrontPage

http://www.w3.org/2000/10/swap/doc/cwm.html
http://www.w3.org/2000/10/swap/doc/cwm.html
http://www.w3.org/RDF/Validator/
http://www.w3.org/RDF/Validator/
http://dig.csail.mit.edu/2010/LinkedData/res.html
http://dig.csail.mit.edu/2010/LinkedData/res.html
http://esw.w3.org/topic/FrontPage
http://esw.w3.org/topic/FrontPage


COMMON
ONTOLOGIES/VOCABULARIES

• ESW Wiki has some: http://esw.w3.org/topic/TaskForces/
CommunityProjects/LinkingOpenData/CommonVocabularies

• I’ve collected a few useful ones:
http://delicious.com/pipian/ontology

• A little outdated, but perhaps still useful is SchemaWeb:
http://www.schemaweb.info/

• And don’t be afraid to look at the data sources themselves and 
visit the namespace URIs of unfamiliar vocabularies...

http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/CommonVocabularies
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/CommonVocabularies
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/CommonVocabularies
http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/CommonVocabularies
http://delicious.com/pipian/ontology
http://delicious.com/pipian/ontology
http://www.schemaweb.info
http://www.schemaweb.info


DATASOURCES THAT MIGHT 
PROVE USEFUL:

• DBTune MusicBrainz Data: http://dbtune.org/musicbrainz/sparql

• DBPedia: http://dbpedia.org/sparql

• Other DBTune data (Jamendo, Magnatune, last.fm scrobbles, etc.): 
http://dbtune.org/

• Geonames: http://www.geonames.org/export/ws-overview.html

• Links to more sources on the Linked Data “map”: http://
www4.wiwiss.fu-berlin.de/bizer/pub/lod-datasets_2009-03-05.html

http://dbtune.org/musicbrainz/sparql
http://dbtune.org/musicbrainz/sparql
http://dbpedia.org/sparql
http://dbpedia.org/sparql
http://dbtune.org
http://dbtune.org
http://www.geonames.org/export/ws-overview.html
http://www.geonames.org/export/ws-overview.html
http://www4.wiwiss.fu-berlin.de/bizer/pub/lod-datasets_2009-03-05.html
http://www4.wiwiss.fu-berlin.de/bizer/pub/lod-datasets_2009-03-05.html
http://www4.wiwiss.fu-berlin.de/bizer/pub/lod-datasets_2009-03-05.html
http://www4.wiwiss.fu-berlin.de/bizer/pub/lod-datasets_2009-03-05.html


QUESTIONS?



GOOD LUCK!


