Ontology Development

Lalana Kagal
Decentralized Information Group

e

What is an ontology “?

+ Formal specifications of the terms in a domain and the relations among them

Gruber, T.R. (1993). A Translation Approach to Portable Ontology Specification.
Knowledge Acquisition 5: 199-220.

+ Consists of concepts in a domain of discourse, properties of each concept, and
restrictions on properties (such as range of values)

Shared content-vocabularnes'
Ontologles |

Formal, < — machine
~_|processable

concepts, properties,

explicit specification |
i ~|relations, functions

' Shared< —— Consensual
2 -‘ knowledge |

conceptuahsatlon — Abstract model of
some domain

Image courtesy Frank Van Harmelen
http://knoesis.wright.edu/faculty/pascal/esslli06/slides/1b-semweb-languages.pdf

http://www.w3.org/2009/Talks/1005-jaoo-egp/
http://www.w3.org/2009/Talks/1005-jaoo-egp/

Why do we need ontologies 7

+ Why do we need ontologies ?
Shared understanding of domain of interest
To enable reuse of domain knowledge
To make domain assumptions explicit

To analyze domain knowledge

e

Ontology, vocabulary and taxonomy “?

+ \What are taxonomies and vocabularies ? Are they the same ? Are they
related to ontologies ?

Do | need to understand Al 7?

e

+ NO
+ Some parts of SW languages are based on description logic
decidable fragment of FOL

iIncludes efficient inference procedures for most common
decision problems such as

o instance checking (is a particular instance a member of a
given concept)

o relation checking (does a relation hold between two
instances)

o subsumption (is a concept a subset of another concept)

o concept consistency (is there no contradiction among the
definitions or chain of definitions)

A

The Day of
PROPI

C ASIMOV
the Mechanical Men—
STRANGE

PSi or A RA

Ontology Languages

+ Two W3C recommendations for defining ontologies
RDF Vocabulary Description Language (RDFS)
=@ RDFS defines the use of RDF to describe RDF vocabularies
Web Ontology Language (OWL)

o OWL 1 provides more expressivity than RDFS and is used to express
vocabularies / ontologies

o OWL 1 has three increasingly expressive sublanguages: OWL Lite,
OWL DL, and OWL Full (with reducing computational guarantees)

= OWL 2 provides more expressivity over OWL 1

Ontology Languages

+ RDFS
Set theory — rdfs:Class
Relation — rdf:Property, rdfs:domain, rdfs:range
Hierarchy — rdfs:subClassOf, rdfs:subPropertyOf
Built-in Datatype — xsd:string, xsd:dataTime
+ OWL 1
Description Logic
o Class, Thing, Nothing
= DatatypeProperty, ObjectProperty, AnnotationProperty,...
Class axioms
= oneOf, disjointWith, unionOf, complementOf, intersectionOf ...
o Restriction, onProperty, cardinality, hasValue...
Property axioms
= inverseOf , TransitiveProperty , SymmetricProperty
o FunctionalProperty, InverseFunctionalProperty
Equality— equivalentClass , sameAs , differentFrom...

Ontology annotation — imports, versioninfo

Notations

+ property names begin with lowercase letter
parent is a property
use parent instead of hasparent
= Ann (is) parent (of) Alice or Alice(’s) parent (is) Ann
o These slides assume Alice(’s) parent (is) Ann
+ class names begin with uppercase letter

Parent is a Class

RDFS

+ @prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>.
+ rdfs:Resource

All things described by RDF are called resources and are instances of the class
rdfs:Resource

This is the class of everything
All other classes are subclasses of this class

rdfs:Resource is an instance of rdfs:Class
Alice rdf:type rdfs:Resource

with @keywords shorthand: Alice a rdfs:Resource

http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#

RDFS

+ rdfs:Class
Mammal rdf:type rdfs:Class

with @keywords shorthand: Mammal a rdfs:Class

(
@&

100f 37

RDFS

+ rdfs:subClassOf

Person rdfs:subClassOf Mammal. -

Male rdfs:subClassOf Person.
Female rdfs:subClassOf Person.

+ multiple rdfs:subClassOf = intersection
Parent rdfs:subClassOf Person. Ubclass
Mother rdfs:subClassOf Parent, Female. of

subclass subclass
of

of

11 0of 37

RDFS

+ rdf:type
JoeLambda rdf:type Person

with @keywords shorthand: JoeLambda a Person.
+ RDFS reasoning

Person rdfs:subClassOf Mammal.
JoeLambda a Person.

=> JoeLambda a Mammal.

12 0of 37

RDFS

+ rdf:Property

parent rdf:type rdf:Property

with @keywords shorthand: parent a rdf:Property
+ rdfs:subPropertyOf

mother rdfs:subPropertyOf parent

father rdfs:subPropertyOf parent

+ RDFS reasoning
mother rdfs:subPropertyOf parent.
JoeLambda mother Alice.
=> JoeLambda parent Alice.

13 of 37

RDFS

+ rdfs:range & rdfs:domain

To define range and domain of parent property -
father rdfs:range Male.

father rdfs:domain Person.

+ having range and domain set causes a property to act like -

a function from the set of instances of the domain (i.e Person)
to the set of instances of the range (i.e. Male) Subcass<

+ RDFS reasoning
JoeLambda father Bob. 7 ot
=> Bob a Male. JoeLambda a Person. e

14 of 37

Family ontology

@keywords a.

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix : <http://dig.csail.mit.edu/2010/LinkedData/testdata/family#> .

Mammal a rdfs:Class.

Person rdfs:subClassOf Mammal.
Male rdfs:subClassOf Person.
Female rdfs:subClassOf Person.

parent a rdf:Property;
rdfs:range Person;
rdfs:domain Person.

mother rdfs:subPropertyOf parent;
rdfs:range Female;
rdfs:domain Person.

father rdfs:subPropertyOf parent;
rdfs:range Male;
rdfs:domain Person.

150f 37

http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://dig.csail.mit.edu/2010/LinkedData/testdata/family#
http://dig.csail.mit.edu/2010/LinkedData/testdata/family#

—xercise T

+ Define sibling property and brother, sister property based on sibling

16 of 37

—Xercise 1

+ Define sibling property and brother, sister property based on sibling

sibling a rdf:Property.

brother rdfs:subPropertyOf sibling;
rdfs:range Male;
rdfs:domain Person.

sister rdfs:subPropertyOf sibling;
rdfs:range Female;
rdfs:domain Person.

16 of 37

e

—Xercise 2

+ Given the following, can you infer that every sister is Female ? And how ?

sibling rdf:type rdf:Property.

sister rdfs:subPropertyOf sibling;
rdfs:range Person;
rdfs:domain Female.

17 of 37

e

—Xercise 2

+ Given the following, can you infer that every sister is Female ? And how ?

sibling rdf:type rdf:Property.

sister rdfs:subPropertyOf sibling;
rdfs:range Person;
rdfs:domain Female.

17 of 37

e

—Xercise 2

+ Given the following, can you infer that every sister is Female ? And how ?

sibling rdf:type rdf:Property.

sister rdfs:subPropertyOf sibling;
rdfs:range Person;
rdfs:domain Female.

No

sibling rdf:type rdf:Property.

sister rdfs:subPropertyOf sibling;
rdfs:range Female;
rdfs:domain Person.

17 of 37

—Xercise 3

+ Define a instance of Person with mother, father, sister, and brother
relationships

18 of 37

—Xercise 3

+ Define a instance of Person with mother, father, sister, and brother
relationships

< mother

brother -
sister

18 of 37

—Xercise 3

+ Define a instance of Person with mother, father, sister, and brother
relationships

JoelLambda a Person;

mother Alice;
father Bob:;

sister Carol; m
brother Henry.

brother -
sister

mother

18 of 37

e

—Xxercise 4

+ If you know about Mammal and Person classes, and sibling, brother, sister,
parent, mother and father relationships, what are the RDFS inferences you
can make from the following ?

< mother

JoeLamba m
brother -
sister

e

—Xxercise 4

+ If you know about Mammal and Person classes, and sibling, brother, sister,
parent, mother and father relationships, what are the RDFS inferences you

can make from the following ? l

JoeLambda a Mammal. sa mothe? -

Alice a Female, Person, Mammal.

Carol a Female, Person, Mammal. ,fatm

Bob a Male, Person, Mammal. rother w -
sister

Henry a Male, Person, Mammal.

OWL 1.0

+ RDFS is a vocabulary for describing properties and classes
+ OWL adds more vocabulary
relations between classes
property types (classes of properties)
characteristics of properties (properties of properties)
cardinality constraints (upper/lower limit on number of)
equality between classes and instances

enumerated classes

20of 37

OWL

+ @prefix owl: <http://www.w3.0rg/2002/07/owl#>.

+ owl:Class rdfs:subClassOf rdfs:Class.

Mammal a owl:Class.

Person rdfs:subClassOf Mammal.

210of 37

http://www.w3.org/2002/07/owl#
http://www.w3.org/2002/07/owl#

OWL

+ Relations between classes

equivalentClass, intersectionOf, unionOf, complementOf

Male a owl:Class.
Female a owl:Class.

Person a owl:Class;
owl:unionOf (Male Female).

Female owl:.complementOf Male.

22 of 37

e

—Xercise 5

+ If Parent is a subclass of Person, define Father and Mother classes. Hint:
use intersectionOf

Male a owl:Class.
Female a owl:Class.

Person a owl:Class;
owl:unionOf (Male

Female).

Female owl:complementOf Male.

Parent rdfs:subClassOf Person.

23 of 37

e

—Xercise 5

+ If Parent is a subclass of Person, define Father and Mother classes. Hint:
use intersectionOf

Male a owl:Class.

_ Father a owl:Class;
Female a owl:Class.

owl:intersectionOf (Male Parent) .

Person a owl:Class;
owl:unionOf (Male
Female).

Mother a owl:Class;
owl:intersectionOf (Female Parent) .

Female owl:complementOf Male.

Parent rdfs:subClassOf Person.

23 of 37

e

—Xercise 6

+ Redefine mother and father properties using Mother and Father classes

Father a owl.Class;

owl:intersectionOf (Male Parent).
Mother a owl:Class;

owl:intersectionOf (Female Parent) .

parent rdf:type rdf:Property;
rdfs:range Parent;
rdfs:domain Person.

father rdfs:subPropertyOf parent;
rdfs:range Male;
rdfs:domain Person.

mother rdfs:subPropertyOf parent;
rdfs:range Female;
rdfs:domain Person.

24 of 37

e

—Xercise 6

+ Redefine mother and father properties using Mother and Father classes

Father a owl.Class; father rdfs:subPropertyOf parent;
owl:intersectionOf (Male Parent) . rdfs:range Father;

Mother a owl:Class; rdfs:domain Person.
owl:intersectionOf (Female Parent) .

mother rdfs:subPropertyOf parent;

parent rdf:type rdf:Property; rdfs:range Mother;
rdfs:range Parent; rdfs:domain Person.
rdfs:domain Person.

father rdfs:subPropertyOf parent;
rdfs:range Male;
rdfs:domain Person.

mother rdfs:subPropertyOf parent;
rdfs:range Female;
rdfs:domain Person.

24 of 37

OWL

+ Property types

ObjectProperty: relations between instances of two classes

mother a owl:ObjectProperty; rdfs:domain Person; rdfs:range Parent.

DatatypeProperty: relations between instances of classes and RDF
literals and XML Schema datatypes

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

dateofbirth a owl:DatatypeProperty;
rdfs:range xsd:date;
rdfs:domain Person.

250f 37

http://www.w3.org/2001/XMLSchema#
http://www.w3.org/2001/XMLSchema#

—Xxercise 7

+ What are some DatatypeProperty we can add to family ontology ?

26 of 37

—Xxercise 7

+ What are some DatatypeProperty we can add to family ontology ?

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

age a owl:DatatypeProperty;
rdfs:range xsd:integer;
rdfs:domain Person.

JoeLambda age "8"*xsd:integer.

26 of 37

http://www.w3.org/2001/XMLSchema#
http://www.w3.org/2001/XMLSchema#

OWL

+ Characteristics of properties

27 of 37

OWL

+ Characteristics of properties
TransitiveProperty: P(x,y) and P(y,z) implies P(x,z)
relatedTo a owl:TransitiveProperty.

Joe relatedTo Henry. Henry relatedTo Ann. => Joe relatedTo Ann.

27 of 37

OWL

+ Characteristics of properties
TransitiveProperty: P(x,y) and P(y,z) implies P(x,z)
relatedTo a owl:TransitiveProperty.

Joe relatedTo Henry. Henry relatedTo Ann. => Joe relatedTo Ann.

SymmetricProperty: P(x,y) iff P(y,x)
sibling a owl:SymmetricProperty.

JoeLambda sibling Carol => Carol sibling JoeLambda.

27 of 37

OWL

+ Characteristics of properties

28 of 37

OWL

+ Characteristics of properties

FunctionalProperty: P(x,y) and P(x,z) impliesy =z
birthmother a owl:FunctionalProperty.
JoeLambda birthmother Alice. JoeLambda birthmother Alicia. => Alice = Alicia

28 of 37

OWL

+ Characteristics of properties

FunctionalProperty: P(x,y) and P(x,z) impliesy =z
birthmother a owl:FunctionalProperty.
JoeLambda birthmother Alice. JoeLambda birthmother Alicia. => Alice = Alicia

inverseOf:P1(x,y) iff P2(y,x)
wife owl:inverseOf husband.
JoeLambda wife Amy => Amy husband JoeLambda

28 of 37

OWL

+ Characteristics of properties

FunctionalProperty: P(x,y) and P(x,z) impliesy =z
birthmother a owl:FunctionalProperty.
JoeLambda birthmother Alice. JoeLambda birthmother Alicia. => Alice = Alicia

inverseOf:P1(x,y) iff P2(y,x)
wife owl:inverseOf husband.
JoeLambda wife Amy => Amy husband JoeLambda

InverseFunctionalProperty: P(y,x) and P(z,x) implies y = z

email a owl:InverseFunctionalProperty.

JoeLambda email abc@ex.com. JosephLamba email abc@ex.com => JoeLambda
= JosephLamba

28 of 37

mailto:abc@ex.com
mailto:abc@ex.com
mailto:abc@ex.com
mailto:abc@ex.com

—Xxercise 8

+ Define a functional property and an inverseOf property

TransitiveProperty: P(x,y) and P(y,z)
implies P(x,z)
relatedTo a owl: TransitiveProperty.

SymmetricProperty: P(x,y) iff P(y,x)
sibling a owl:SymmetricProperty.
JoeLambda sibling Carol => Carol sibling
JoeLambda.

FunctionalProperty: P(x,y) and P(x,z)
impliesy =z

birthmother a owl:FunctionalProperty.
JoeLambda birthmother Alice. JoeLambda
birthmother Alicia. => Alice = Alicia

inverseOf:P1(x,y) iff P2(y,x)

wife owl:inverseOf husband.
JoeLambda wife Amy => Amy husband
JoeLambda

InverseFunctionalProperty: P(y,x) and
P(z,x) impliesy =z

email a owl:InverseFunctionalProperty.
JoeLambda email abc@ex.com.
JosephLamba email abc@ex.com =>
JoeLambda = JosephLambs

29 of 37

mailto:abc@ex.com
mailto:abc@ex.com
mailto:abc@ex.com
mailto:abc@ex.com

—Xxercise 8

+ Define a functional property and an inverseOf property

TransitiveProperty: P(x,y) and P(y,z)
implies P(x,z)
relatedTo a owl: TransitiveProperty.

SymmetricProperty: P(x.y) iff P(y,x) spouse a owl:FunctionalProperty.
sibling a owl:SymmetricProperty.

JoeLambda sibling Carol => Carol sibling - ; — —
JoeLambda. Alice spouse Bob. Alice spouse Bobby. => Bob = Bobby

FunctionalProperty: P(x,y) and P(x,z) child owl:inverseOf parent.
impliesy =z

birthmother a owl:FunctionalProperty.
JoeLambda birthmother Alice. JoeLambda
birthmother Alicia. => Alice = Alicia

Alice child JoeLambda => JoeLambda parent Alice

inverseOf:P1(x,y) iff P2(y,x)

wife owl:inverseOf husband.
JoeLambda wife Amy => Amy husband
JoeLambda

InverseFunctionalProperty: P(y,x) and
P(z,x) impliesy =z

email a owl:InverseFunctionalProperty.
JoeLambda email abc@ex.com.
JosephLamba email abc@ex.com =>
JoeLambda = JosephLambs

29 of 37

mailto:abc@ex.com
mailto:abc@ex.com
mailto:abc@ex.com
mailto:abc@ex.com

—xercise 9

+ What can you infer if

30of 37

—xercise 9

+ What can you infer if

spouse a owl:SymmetricProperty. Ann spouse Bobby. Annie spouse Henry.

30 of 37

—xercise 9

+ What can you infer if

spouse a owl:SymmetricProperty. Ann spouse Bobby. Annie spouse Henry.

=> Bobby spouse Ann. Henry spouse Annie.

30of 37

—xercise 9

+ What can you infer if

spouse a owl:SymmetricProperty. Ann spouse Bobby. Annie spouse Henry.
=> Bobby spouse Ann. Henry spouse Annie.

niece owl:inverseOf aunt. Alice niece Ann.

30of 37

—xercise 9

+ What can you infer if

spouse a owl:SymmetricProperty. Ann spouse Bobby. Annie spouse Henry.
=> Bobby spouse Ann. Henry spouse Annie.
niece owl:inverseOf aunt. Alice niece Ann.

=> Ann aunt Alice.

30of 37

—xercise 9

+ What can you infer if

spouse a owl:SymmetricProperty. Ann spouse Bobby. Annie spouse Henry.
=> Bobby spouse Ann. Henry spouse Annie.
niece owl:inverseOf aunt. Alice niece Ann.

=> Ann aunt Alice.

friend a owl: TransitiveProperty. Joe friend Tim. Harry friend Joe.

30of 37

—xercise 9

+ What can you infer if

spouse a owl:SymmetricProperty. Ann spouse Bobby. Annie spouse Henry.
=> Bobby spouse Ann. Henry spouse Annie.

niece owl:inverseOf aunt. Alice niece Ann.

=> Ann aunt Alice.

friend a owl: TransitiveProperty. Joe friend Tim. Harry friend Joe.

=> Harry friend Tim.

30of 37

—xercise 9

+ What can you infer if

spouse a owl:SymmetricProperty. Ann spouse Bobby. Annie spouse Henry.
=> Bobby spouse Ann. Henry spouse Annie.

niece owl:inverseOf aunt. Alice niece Ann.

=> Ann aunt Alice.

friend a owl: TransitiveProperty. Joe friend Tim. Harry friend Joe.

=> Harry friend Tim.

friend a owl:TransitiveProperty. Ann friend Mary. Harry friend Mary.

30of 37

—xercise 9

+ What can you infer if

spouse a owl:SymmetricProperty. Ann spouse Bobby. Annie spouse Henry.
=> Bobby spouse Ann. Henry spouse Annie.

niece owl:inverseOf aunt. Alice niece Ann.

=> Ann aunt Alice.

friend a owl: TransitiveProperty. Joe friend Tim. Harry friend Joe.

=> Harry friend Tim.

friend a owl:TransitiveProperty. Ann friend Mary. Harry friend Mary.

=> No additional inferences

30of 37

e

OWL

+ Property restrictions

Allows you to define an anonymous class of all individuals that satisfy the
restriction

allValuesFrom

o requires that for every instance of the class that has instances of the
specified property, the values of the property are all members of the
class indicated by the owl:allValuesFrom clause

o does not require the class to have the property, but if it does, all
properties must be in the class specified.

PersonsWithOnlyDaugthers rdfs:subclassOf Person, PersonsWithOnlySons rdfs:subclassOf Person,
[a owl:Restriction; [a owl:Restriction;
owl:onProperty child; owl:onProperty child;
owl:allValuesFrom Female]. owl:allValuesFrom Male].

310f 37

OWL

+ Property restrictions
someValuesFrom

o similar to allValuesFrom but mean that at least one of the keyword of a
SemWebPaper must be a Sem\WebKeyword

o it requires that there be at least one property that is in the class
specified, but there may be properties that aren't.

o allValuesFrom versus someValuesFrom - universal versus existential
quantification

PersonsWithAtLeastOneDaugther rdfs:subclassOf Person,
[a owl:Restriction;

owl:onProperty child;

owl:someValuesFrom Female].

SemWebPaper rdfs:subclassOf Paper,

[a owl:Restriction;
owl:onProperty keyword;
owl:someValuesFrom SemWebKeyword].

32 of 37

e

OWL

+ Property restrictions

hasValue allows us to specify classes based on the existence of particular
property values

JoesSiblings rdfs:subclassOf Person,
[a owl:Restriction;
owl:onProperty brother;
owl:hasValue JoeLambda].

cardinality constraints

owl:cardinality specifies exactly the number of elements in a relation
owl:maxCardinality can be used to specify an upper bound
owl:minCardinality can be used to specify a lower bound

PersonsWithTwoParents rdfs:subclassOf Person,
[a owl:Restriction;
owl:cardinality "2"*xsd:nonNegativelnteger;
owl:onProperty parent | .

33 of 37

e

—xercise 9

+ Use property restrictions (allValuesFrom, someValuesFrom, hasValue or
cardinality constraints) to define a class of Joe’s brothers who have at least
one child

34 of 37

e

—xercise 9

+ Use property restrictions (allValuesFrom, someValuesFrom, hasValue or
cardinality constraints) to define a class of Joe's brothers who have at least

one child

JoesSiblings rdfs:subclassOf Person,
[a owl:Restriction;
owl:onProperty brother;
owl:hasValue JoeLambda].

JoesBrothersWithAtLeastOneChild rdfs:subClassOf JoesSiblings, Male,

[a owl:Restriction;
owl:minCardinality "1"*xsd:nonNegativelnteger;

owl:onProperty child | .

34 of 37

OWL

+ Equivalence between Classes and Properties: equivalentClass,
equivalentProperty

+ ldentity between Individuals
JoeLambda owl:sameAs JosephLamba.

+ Different Individuals: differentFrom, AllDifferent

+ Enumerated Classes: List instances that belong to the class

<owl:AllDifferent> <owl:Class rdf:ID="WineColor">
<owl:distinctMembers rdf:parseType="Collection"> <rdfs:subClassOf rdf:resource="#WineDescriptor"/>
<Person rdf:about="#Joe"/> <owl:oneOf rdf:parseType="Collection">
<Person rdf:about="#Alice"/> <owl:Thing rdf:about="#White"/>
<Person rdf:about="#Henry"/> <owl:Thing rdf:about="#Rose"/>
</owl:distinctMembers> <owl:Thing rdf:about="#Red"/>
</owl:AllDifferent> </owl:oneOf>

</owl:Class>

35of 37

Summary

+ Ontology
Formal specifications of the terms in a domain and the relations among them

Advantages: common understanding of domain, helps in reuse and making
assumptions explicit

+ W3C ontology languages
RDFS
@ concepts for defining classes, properties and their hierarchies
OWL
o extends expressivity of RDFS

@ class relations, property types, characteristics of properties, property restrictions
and equivalence relations, etc.

36 of 37

References

+ Ontology Development 101, http://protege.stanford.edu/publications/
ontology development/ontology101-noy-mcguinness.html

+ RDFS, http://www.w3.org/TR/rdf-schema/

+ Description Logic, http://en.wikipedia.org/wiki/Description_logic
+ OWL 1, http://www.w3.0rg/TR/2004/REC-owl-guide-20040210/
+ OWL 2, http://www.w3.0org/TR/owl2-overview/

This work is licensed under a Creative Commons Attribution 3.0 License, with attribution to Lalana Kagal (http://csail.mit.edu/~lkagal)

37 of 37

http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://en.wikipedia.org/wiki/Description_logic
http://en.wikipedia.org/wiki/Description_logic
http://creativecommons.org/licenses/by-nd/3.0/
http://creativecommons.org/licenses/by-nd/3.0/
http://csail.mit.edu/~lkagal
http://csail.mit.edu/~lkagal

