
Data Provenance in Distributed Propagator
Networks

Ian Jacobi

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139
jacobi@csail.mit.edu

Abstract. The heterogeneous and unreliable nature of distributed sys-
tems has created a distinct need for the inclusion of provenance within
their design to allow for error correction and redundancy. Many tradi-
tional distributed systems have limited provenance tracing abilities, usu-
ally included in generic workflow generation or in an application-specific
way. The novel programming paradigm of distributed propagator net-
works allows for the inclusion of provenance from the ground up.
In this paper, I present the concept of propagator networks and demon-
strate how provenance may be easily integrated into programs built using
them. I also demonstrate the possibility of converting non-provenance-
aware applications built using propagator networks into provenance-
aware applications by simply performing a transformation of the existing
program structure.

1 Introduction

Data provenance, that is, the derivation history of a piece of data [1], is an
integral need of distributed systems like Google’s MapReduce algorithm [2], or
BOINC [3]. In distributed systems such as these, it is difficult to infer provenance
of a particular result as the result may be generated by any one of thousands
of systems. As a result, provenance handling must be explicitly factored into
distributed system design.

Depending on how well an existing distributed architecture is designed, it
may be difficult to support many use cases of provenance in applications that
use the architecture. Such programs may need to explicitly include provenance
in the design of the application. It would be far easier for developers of dis-
tributed applications not to need to worry about how provenance is handled in
their distributed system; this would reduce complexity of program design. Data
propagation, a model of concurrent [4] and distributed computation [5], allows
for the transformation of programs that use it so they may track provenance.

2 Propagator Networks

Propagator networks, developed by Radul [4], are a general-purpose concurrent
programming paradigm. These bipartite networks are constructed by connecting



temp−converter temp−converter temp−converter temp−converter

(a) (b) (c) (d)

77−86F

20−30C

68−86F 68−86F

25−30C 25−30C

68−86F

25−30C

Fig. 1. A refinement of the contents of the top cell in (b) causes temp-converter to
fire in (c), which then refines the bottom cell in (d).

“cells” that permanently store state and stateless propagators which perform
computation and update the cells they are connected to.

Cells are a form of memory which may be assigned a partial value that can
be refined. Upon receiving an update to this value, a cell accumulates knowledge
of the value by applying a user-defined merge operation to unify the information
contained in the update with the partial value currently stored there.

After a cell has changed its state by merging an update, any propagators
that have registered an interest in the cell wake up and begin to process, as in
(c) in Figure 1. These propagators may then send updates to other cells (d) and
cause another cycle of cell merging and notification of propagators; this drives
continued computation.

Networks of propagators have no constraints on their topology and may con-
tain cycles. The order of operations in propagator networks is undefined other
than the ordering enforced by propagation itself (i.e. a cell must update before
propagators attached to it may fire). This, along with the separation of state
and computation makes propagation a flexible framework for concurrency.

2.1 Propagators in a Distributed System

The modularity of propagator networks makes it relatively simple to extend
their use to distributed systems. [5] In order to push updates across a network,
we may bridge the network with propagators that duplicate cells on different
computers. By implementing a “synchronization propagator” on each host to
forward updates between copies of cells, local updates can trigger remote ones,
effecting remote computation. This computation may update other cells that
then cause cell synchronization and update more remote cells.

To ensure that no inconsistencies arise due to network issues, we require four
properties of a cell merge operation: idempotency, associativity, commutativity,
and monotonicity. We also require all cell copies to have the same merge op-
eration. Although the only operations that adhere to these constraints may be
the operations of logical conjunction and disjunction or comparable operations



32

temp−converter

temp−converter 0

32

[UUID] [UUID]

0

[UUID] [UUID]

NOAA

[Remote]
NOAA

(b)

(a)
(c)

(d)

Fig. 2. We transform a propagator temp-converter (top) into a provenance-aware
propagator network (bottom). Solid arrows indicate the flow of computation in the
propagator network. Note that the provenance (c) and data (b) cells contain pointers
to the main identifier cell (a) (and vice versa), marked with dashed arrows.

over alternate domains, merge operations that do not adhere to these principles
may be modified into operations that do. Standard distributed database imple-
mentations account for the transitivity and implicit monotonicity of network
communications when performing non-transitive and non-monotonic deletions
[6]. Similar adaptations of other merge operations may be possible.

3 Adding Provenance to Propagator Networks

Provenance may be easily implemented on top of existing propagator networks
without adding any additional mechanisms or basic primitives to the propagator
paradigm. Rather than treating a cell as a single object with a number of simple
propagators attached to it, we may apply a simple transformation that adds the
cells and propagators needed to make the propagator provenance-aware.

We choose to separate provenance from the data itself, as in Figure 2. In that
example, a cell containing a measurement of 32 (degrees Fahrenheit) made by the
National Oceanic and Atmospheric Administration (NOAA) is divided into three
sub-cells. One cell contains the data (b), another the provenance (c), and a third
(a) that points to both sub-cells and contains a Universally Unique Identifier
(UUID) along with associated metadata, linking the three cells together.

Separating the sub-cells in this way allows these separate aspects of the data
to be refined separately. It also allows for separate access control of provenance
and data, as the auditors allowed to view provenance may be different from gen-
eral users. [7] Each of these three components, data, provenance, and metadata,
are placed into one of three sub-cells where they may be refined.

Transforming a propagator to be provenance-aware is even simpler; it re-
quires the propagator to be modified with an additional sub-propagator for each
input/output cell pair (d). This sub-propagator will only allow the provenance



of an input to be sent to the output cell when data has been sent by the main
propagator to the output, effectively acting as a switch.

Provenance may be constructed by gradually aggregating the graph of prove-
nance stored in each provenance sub-cell. Contents of new provenance updates
may be added to an existing provenance graph, and then propagated through
other provenance-aware propagators. Changes to existing provenance will also
be forwarded through a provenance-aware propagator, and these changes may
be merged into the existing knowledge of the provenance sub-cell. Thus, data
propagation may be used for both computation and provenance construction.

4 Related Work

The work of Moreau, et al. [8] features the automatic construction of provenance,
much as provenance-aware data propagation does. However, Moreau focuses on
querying the provenance after its construction rather than detailing its genera-
tion. Moreau also assumes that provenance may be general in his system, able
to document the purpose of an action. Although propagator networks may be
able to do so, we make no claims about the creation of subjective provenance.

Altintas, et al.’s extension of the Kepler Scientific Workflow System [9] is also
similar to the work presented here. Just as we may extend existing propagator
networks to support provenance, Altintas demonstrates an extension of an exist-
ing framework, Kepler, to support provenance. Altintas’s centralized approach
for collecting provenance is not suitable for propagator networks however, as
propagator networks are inherently decentralized. Adapting Altintas’s approach
would scale poorly with the propagator network as the number of messages sent
to the propagator server grows.

The Matrioshka system presented by da Cruz, et al [10] proposes another
mechanism for provenance tracking in distributed workflows. Unlike provenance
propagation, Matrioshka requires a single centralized provenance store rather
than distributing the provenance with the data. Matrioshka is also somewhat
more brittle than the system proposed here, as it assumes that logging is aleady
performed, and relies on the generation of a log prior to constructing provenance.

5 Contributions and Future Work

The power of data propagation may resolve many of the difficulties encountered
in concurrent and distributed processing, and we should consider the role of
integrating provenance into systems that make use of this technique. In this
paper I have demonstrated the value of the data propagation paradigm not
only by allowing for the distribution of provenance, but also by permitting the
extension of existing programs to support provenance.

I have currently implemented the system described in this paper on top
of a distributed propagator framework (DProp) that I have designed. While
the implementation of both DProp and the provenance-aware component are
Python-based, the more generic nature of propagators allows this design to be



useful more generally. I hope to eventually test the system across a number of
hosts to ensure that the system is fully scalable.

6 Acknowledgements

I would like to thank Joe Pato of HP Labs, and Gerry Sussman and other
members of the Decentralized Information Group at MIT for their advice and
criticism. I would like to extend particular thanks to Alexey Radul for his assis-
tance with the architectural design of distributed propagation. Finally, I would
also like to acknowledge that this work was supported in part by the National
Science Foundation under NSF Cybertrust Grant award number CNS-0831442
and by IARPA under Grant FA8750-07-2-0031.

References

1. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science.
ACM SIGMOD Record 34(3) (September 2005) 31–36

2. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clus-
ters. In: Proceedings of the 6th Symposium on Operating System Design and
Implementation (OSDI 2004), USENIX Association (2004)

3. Anderson, D.P.: BOINC: A system for public-resource computing and storage. In:
Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing,
IEEE Computer Society (2004) 4–10

4. Radul, A.: Propagation Networks: A Flexible and Expressive Substrate for Com-
putation. PhD thesis, Massachusetts Institute of Technology (2009)

5. Jacobi, I., Radul, A.: A RESTful messaging system for asynchronous distributed
processing. In: Proceedings of the First International Workshop on RESTful De-
sign, Raleigh, NC, USA, ACM (2010)

6. Birrell, A.D., Levin, R., Needham, R.M., Schroeder, M.D.: Grapevine: An exercise
in distributed computing. Communications of the ACM 25(4) (April 1982) 260–274

7. Braun, U., Shinnar, A.: A security model for provenance. Technical Report TR-
04-06, Computer Science Group, Harvard University (2006)

8. Moreau, L., Groth, P., Miles, S., Vazquez-Salceda, J., Ibbotson, J., Jiang, S.,
Munroe, S., Rana, O., Schreiber, A., Tan, V., Varga, L.: The provenance of elec-
tronic data. Communications of the ACM 51(4) (March 2008) 52–58

9. Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance collection support in the
kepler scientific workflow system. In: Provenance and Annotation of Data: Inter-
national Provenance and Annotation Workshop, IPAW 2006. Volume 4145/2006
of Lecture Notes in Computer Science., Chicago, IL, USA, Springer (May 2006)
118–132

10. da Cruz, S.M.S., Barros, P.M., Bisch, P.M., Campos, M.L.M., Mattoso, M.: Prove-
nance services for distributed workflows. In: Proceedings of the 2008 Eighth IEEE
International Symposium on Cluster Computing and the Grid, IEEE Computer
Society (2008) 526–533


