
Gasping for AIR – Why we need linked rules and
justifications on the Semantic Web?

Lalana Kagal1, Ian Jacobi1, and Ankesh Khandelwal2

1 MIT CSAIL
Cambridge, MA 02139

{lkagal, jacobi}@csail.mit.edu
2 Rensselaer Polytechnic Institute

Troy, NY 12180
ankesh@cs.rpi.edu

Abstract. The Semantic Web is a distributed model for publishing, utilizing and
extending structured information using Web protocols. One of the main goals of this
technology is to automate the retrieval and integration of data and to enable the
inference of interesting results. This automation requires logics and rule languages
that make inferences, choose courses of action, and answer questions. The openness
of the Web, however, leads to several issues including the handling of inconsistencies,
integration of diverse information, and the determination of the trustworthiness of
data. AIR is a Semantic Web-based rule language that provides this functionality
while focusing on generating and tracking explanations for its inferences and actions
and conforming to Linked Data principles. AIR supports Linked Rules, which can
be combined and re-used in a manner similar to Linked Data. Additionally, AIR
explanations themselves are Semantic Web data so they can be used for further
reasoning. In this paper we present an overview of AIR, discuss its potential as
a Web rule language by providing examples of how its features can be leveraged
for different inference requirements, describe how justifications are represented and
generated, and present an overview of AIR semantics.

1 Introduction

Though RDF Schema (RDFS) and the Web Ontology Language (OWL 1 & 2) provide some
reasoning capability over Resource Description Framework (RDF) data, the application
of Semantic Web technologies to e-government, business, policy management, workflow
systems, and many other fields requires more expressive rule languages to capture the
underlying system logic. Much of the Semantic Web’s growth today has been in the form
of Linked Data, which means that any Web rule language must be able to handle highly
interconnected and spatially dispersed data. It must be able to dynamically traverse this
web of data to find additional facts to support the conclusions of its reasoner. Furthermore,
a Web rule language should expose its rules as Linked Data as well so that they can be
re-used and combined in a similar manner.
? This work was supported in part by NSF Cybertrust award number CNS-0831442, IARPA

award number FA8750-07-2-0031 and AFOSR award number FA9550-09-1-0152

Web rule languages must be able to cope with the problems that arise from the in-
herent openness of the Web. Reasoning over data on the Web can easily lead to logical
inconsistencies as anyone can assert anything. For example, a reasoner could infer multiple
subjects for the same value of an Inverse Functional property, foaf:mbox sha1sum3,
caused by the incorrect copying of someone’s Friend of A Friend (foaf) page, leading to a
logical inconsistency. A Web rule language must be able to isolate the results of reason-
ing [19] to prevent them from causing inconsistencies in the global state. Another problem
with Web systems involves the trustworthiness of data — what data to trust and what
criteria to use for this decision. Different Web documents may be trusted with assertions
about different data but not all data they contain. For example, a hospital site may be
trusted with information about a potential virus outbreak but may not be trusted with
respect to its inflation predictions. The ability to access only trusted RDF subgraphs from
Web pages is useful in maintaining the quality of inference results. In order to trust infer-
ence results, deduction traces, or justifications as they are known, are also required [9, 10].
They provide detailed provenance information, including the data sources and the rules
applied, to allow applications to evaluate the trustworthiness of a particular result through
automated proof checking [3, 15]. Capturing and tracking this provenance information is
another important property of Web rule languages.

AIR (Accountability In RDF) is a Semantic Web rule language that provides these
features. It is represented in N3 and supports named rules, graphs, quantified variables
and functions for accessing Web resources and SPARQL endpoints, and for cryptographic,
string, and math operations. It also includes functions for objectively retrieving subgraphs
from Web resources as well as functions for scoped contextualized reasoning.

AIR also provides Linked Rules. Most rules, whether laws, security policies, business
rules, or workflow plans, are rarely defined by a single entity or exist in a single docu-
ment. They usually comprise of several rules that are defined and maintained by different
entities. For example, a University policy depends on concepts and rules defined by the
HR department, the different schools, as well as the labs within the schools. Additionally,
rules often reference other rules, including those of other organizations. As an example, a
hospital might want to know with whom a pharmaceutical company might share patient
records it provides and might want to reason over the latter’s rules before transferring
patient information. AIR models this rule re-use and linkage by (i) enabling rules to be
uniquely identified by Uniform Resource Identifiers (URIs) such that they can be spatially
dispersed but combined during reasoning, (ii) allowing rules to be developed modularly
using existing rules, and (iii) allowing rules to be executed from within other rules and
their results to be queried. This conformance of AIR rules to Linked Data principles forms
the basis of Linked Rules that provide a more natural way to think about and model
real world rules, laws and policies on the Web.

AIR has been used in various projects to meet different rule-based inferencing re-
quirements. It has been used for controlled information exchange in information sharing
environments4 where contextualized reasoning was very important. It has been used to
secure access to Web resources [17] and SPARQL endpoints [6] based on the credentials of
the user. AIR has also been used to analyze database queries [11] with respect to privacy

3 http://xmlns.com/foaf/spec/#term_mbox_sha1sum
4 http://dig.csail.mit.edu/2009/DHS-fusion/

policies that required ontology-based reasoning, the querying of large knowledge bases for
factual information and expressive non-monotonic reasoning. Lastly, AIR has been used
in accountability mechanisms for processing audit logs and looking for data usage outside
of what was allowed by data usage policies [23]. All of the above projects made use of
justifications, for deductions by the reasoner, for debugging and accountability purposes.

This paper is structured as follows: we start by describing a motivating scenario in
Section 2 before providing an overview of the AIR language in Section 3. In section 4, we
discuss AIR’s support for justifications — how they are generated and the representation
schema. The next section, Section 5, deals with an overview of the procedural and declara-
tive semantics of AIR followed by a comparison to related work in Section 6. We conclude
the paper with a summary and directions for future work in Section 7.

2 Motivating Use Case

To better understand how AIR’s features may be used to solve complex problems, consider
the following hypothetical scenario: Maury conducts genomic research at BigPharma, a
pharmaceutical company. As part of a larger effort by BigPharma to develop new thera-
pies for diseases of the lung, BigPharma has established a partnership with a number of
hospitals including BigCity Hospital. The purpose of this relationship is to obtain the re-
sponsiveness of patients with certain disease expressions to particular medications. Maury
performs a federated search over the SPARQL endpoints of these hospitals for patient re-
sponse information.

BigCity receives this request but the information cannot be simply given to Maury,
as BigCity, like all hospitals, restricts how patient information may be disseminated to
third parties. Here, BigCity must determine whether or not dissemination of the requested
patient information to Maury would violate any of its rules.

BigCity’s rules state that patient information may only be disseminated to requesters
from “pharmaceutical collaborators”. Since Maury’s credentials need to be verified by
information on a particular SPARQL endpoint maintained by BigPharma, whatever lan-
guage we implement must be able to query SPARQL endpoints and incorporate the results
of queries into its rules. In this way, Maury may be determined to truly be a member of
BigPharma, a pharmaceutical collaborator. Other rules might require patients to have
consented to share their information and might need to query another SPARQL endpoint
for this information.

Determining Maury’s affiliation is not entirely sufficient for BigCity to send the data.
Maury must also be able to prove that he is authorized to act in an appropriate role as de-
fined by another BigCity rule. This rule defines role-based access control (RBAC) rules for
all BigCity employees and states that only “Principal Researchers” can access patient re-
sponse information. The rule also reasons over ontology mappings of collaborators. Maury
must be able to prove that he is employed at BigPharma in a role equivalent to BigCity’s
“Principal Researcher”. As the definitions in the RBAC rule are used in multiple rules,
BigCity should be able to encode it as a separate rule which may be invoked from other
rules. In practice, a rule language that satisfies BigCity’s needs should be recursive.

Unfortunately, Maury is not working in an appropriate role and is denied access to
the information. Although it is entirely possible that BigCity would not desire that Maury

know why he was denied access in the first place, Maury may benefit from knowing exactly
why he was not shown the material he requested. Thus, the rule language used should be
able to encode and present justifications that correspond to the logic used. With such a
justification, Maury will be able to determine not only how the decision against access was
made, but he will also be able to verify the correctness of this determination.

3 AIR Overview

AIR is an extension to N3Logic [4] and has been structured to meet the justification and
reusability requirements of Web information systems. Along with including the N3Logic
features of scoped negation, scoped contextualized reasoning, nested graphs, and built-in
functions, AIR also supports Linked Rules and is focused on generating useful justifi-
cations for all actions made by the reasoner. Like N3Logic, AIR is written in N35, which
provides a human-readable syntax for a superset of RDF. N3 extends the RDF data model
by allowing for the quantification of variables as URIs with the @forAll and @forSome
directives. It also permits the inclusion of nested graphs by using curly braces to quote
subgraphs.

AIR is made up of a set of built-in functions and two independent ontologies — the
first is for the specification of AIR rules, and the second deals with describing justifications
for the inferences made by AIR rules. The built-in functions allow rules to access Web
resources, query SPARQL endpoints, and perform scoped contextualized reasoning, as well
as basic math, string and cryptographic operations. While developing the rule ontology,
we focused on capturing how real world rules and laws are written to allow them to be
represented naturally in AIR. For the justification ontology, our focus was on re-usability
of justifications and on automated proof checking. When given as input some AIR rules,
defined in the AIR rules ontology, and some Semantic Web data, the AIR reasoner produces
a set of inferences that are annotated with justifications, described in the justification
ontology. The runtime input to AIR rules can be any RDF graph or an empty graph, if
the rules only access Web resources.

All the examples in the paper are in N3. Please refer to http://www.w3.org/2000/
10/swap/Primer for an overview of N3 and to the Appendix for the list of namespaces
used in the paper.

3.1 AIR Rules

As illustrated in Figure 1, AIR rules are defined using the following properties: air:if ,
air:then , air:else , air:description , air:rule and air:assert . Every rule is named with
a URI, and they are grouped into air:RuleSets or nested under other rules. This nesting
can happen either under the air:then property or the air:else property. The rules nested
directly under the RuleSet are referred to as the top rules of the ruleset. A chain of
rules is defined as a sequence of rules, such that every rule, barring the first in the chain,
is nested under either the then or the else of the preceding rule. Figure 2 provides an
example of nested rules. In this case, :CheckCollaboratingPharma only becomes active

5 http://www.w3.org/DesignIssues/Notation3.html

Fig. 1. AIR Rule Ontology

if the air:if of the parent rule, :CheckQueryRule, matches a pattern in the knowledge
base. On the other hand, :NonCollaboratorRequestProcessing becomes active when
the air:if of its parent rule fails.

There are three kinds of rules in AIR — air:Belief-rule , air:Hidden-rule and
air:Elided-rule . All rules are, by default, Belief-rules. The descriptions and condi-
tions of Belief-rules contribute to the overall justification. :CheckQueryRule in Figure 2
is an example of a Belief-rule . In contrast, Hidden-rules and Elided-rules are used
to modify the default justification. (Please refer to Section 4.2 for more information about
justification generation and modification).

The conditions of a rule (for example, :REQUEST a ex:Patient Record Request
in Figure 2) are defined as graph patterns which are matched against RDF graphs, similar
to the Basic Graph Pattern (BGP) of SPARQL queries6. If the condition matches the
current state of the world, defined as the facts known or inferred to be true so far, then
all the actions under then are fired, otherwise all the actions under else are fired. The
condition matches the current state if there is a subgraph of known facts that matches the
graph pattern. This subgraph is referred to as the matched graph.

Existentially quantified variables may be declared within graph patterns by using the
@forSome directive. Any universally quantified variables, quantified using @forAll, are
declared outside of the rule. The scope of a existentially quantified variable is the graph
pattern in which it is declared, whereas that of a universally quantified variable is any
chain of nested rules.

Rules with conditions where some graph pattern must match the current state and
others should not match the current state can be specified through the nesting of rules.
The actions under then and else (together referred to as actions) are defined by an
assertion pattern using the air:assert property, or a rule reference, using the air:rule
property. All actions may be annotated with the natural-language description of the rule
or action through the use of the air:description property.

6 http://www.w3.org/TR/rdf-sparql-query/#BasicGraphPatterns

@forAll :REQUEST, :R, :CRED, :C, :G, :SE.

:BigCityDissemination a air:RuleSet;
air:rule :CheckQueryRule.

:CheckQueryRule a air:Belief-rule;
air:if {

:REQUEST a ex:Patient_Record_Request;
ex:requester :R;
ex:credentials :CRED.

};
air:then [

air:description ("Received patient record request, " :REQUEST " from " :R ".");
air:rule :CheckCollaboratingPharma ;

].
:CheckCollaboratingPharma a air:Belief-rule;

air:if {
:CRED log:semantics :C.
:C log:includes { :G foaf:member :R }.
:BIGCITYDB log:includes { :G a ex:CollaboratingPharma ;

ex:sparqlendpoint :SE. }.
};
air:then [

air:description (:REQUEST " might be from collaborating
pharmaceutical company, need further verification from their sources.");
air:rule bcc:CollaboratorRequestProcessing] ;

air:else [air:rule bnc:NonCollaboratorRequestProcessing].

Fig. 2. Example AIR RuleSet: Following from the motivating use case, this rule checks if
the request is from a collaborating pharmaceutical company. Maury’s credential identifies his
organization and BigCity checks whether it is a collaborating partner and if so, identifies its
SPARQL endpoint. The input also includes the RDF graph of Maury’s request, described at
<http://bigcity.example.com/record request log.n3>

When the action is executed, the variables in an assertion pattern (for example, the
variable :CRED in Figure 2) are substituted by their bindings and the pattern is asserted.
If a rule reference is defined instead, an instance of that rule, created by substituting
the variable bindings acquired so far, is activated. The variables in any air:description
property are also instantiated, and the description is maintained by the reasoner.

Any asserted graph pattern cannot contain blank nodes or existentially quantified
variables. When a rule containing an air:else property is activated, its condition cannot
contain unbounded universally quantified variables.

Since AIR supports Linked Rules, AIR rules may be identified by their
URIs that allows them to be easily reused and developed modularly. For instance,
bc:CheckAppropriateRole and bnc:NonCollaboratorRequestProcessing in Figure 3
are defined outside of their parent rule’s document, and AIR semantics cause them to be
included during the reasoning of their parent rule, bcc:CollaboratorRequestProcessing.
The effect of reusing a rule is that all the rule chains starting with that rule are reused.

3.2 AIR Built-ins

AIR supports most N3Logic built-ins including those for cryptographic, math, string,
list and time functions. :LEN math:notGreaterThan 6 is an example graph pat-
tern that uses the math:notGreaterThan built-in function. The subgraph of :LEN
math:notGreaterThan 6 matches if the value of :LEN, which is a variable, is found

@forAll :SPARQL, :RESULTS, :ORG, :ROLE.

bcc:CollaboratorRequestProcessing a air:Belief-rule;
air:if {

("""
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
CONSTRUCT { ?G foaf:member """ :R """ . """ :R """ rdf:type ?ROLE . ?G foaf:name ?ORG . }
WHERE { ?G foaf:member """ :R """ .

?G foaf:name ?ORG.
""" :R """ rdf:type ?ROLE . }

""") string:concatenation :SPARQL .
(:SE :SPARQL) sparql:queryEndpoint :RESULTS .
:RESULTS log:includes { :G foaf:member :R . :G foaf:name :ORG.

:R rdf:type :ROLE . }.
};
air:then [

air:description (:R " has been confirmed to be employed at "
:ORG ", which is an authorized collaborator.");
air:rule bc:CheckAppropriateRole ;

];
air:else [air:rule bnc:NonCollaboratorRequestProcessing].

Fig. 3. Querying a SPARQL endpoint Within AIR Rules: An AIR rule that may be used
to query the SPARQL endpoint to discover if Maury is indeed employed by the organization he
claims to represent and to retrieve his role there. There will be a similar rule that checks if patient
consent has been given.

to be less than or equal to 6. Arguments to N-ary functions and built-ins are declared
using an rdf:List. RDF graphs in Web documents can be accessed using the built-in func-
tion log:semantics, and subgraph matching functionality is provided by the log:includes
property. The log:semantics and log:includes properties allow rules to extract certain
RDF graphs from Web documents making them useful in trust management as different
Web documents may be trusted with assertions about certain data but not all data. Ac-
cessing only trusted RDF subgraphs from Web pages is useful in maintaining the quality of
inference results. The log:notIncludes property is used to check if a graph is not included
in another graph (with closed world semantics).

As seen in Figure 3, SPARQL queries can be executed from within AIR rules using
sparql built-ins. SPARQL CONSTRUCT queries may be sent to SPARQL endpoints using
the sparql:queryEndpoint property assertion, and subgraph patterns may be searched
for in the graph returned by the endpoint.

AIR’s ability to incorporate the contents of SPARQL queries meets the first need of
the motivating use case; BigCity may query back to BigPharma’s SPARQL server to verify
Maury’s identity and role. The rule in Figure 3 includes a SPARQL CONSTRUCT query
to determine Maury’s affiliation and extract a graph that may be used in additional rules.
If this graph contains a desired triple :G foaf:member :R ., it would allow for the
conclusion that Maury is actually a member of BigPharma as his credentials claim.

The air:justifies property can be used to check if the execution of some external AIR
rules (AIR-closure) against some Semantic Web data produces (RDF-entails) a certain
RDF graph. The results of these external rules are not directly included into the current
state but can be queried selectively. Together, the log and air:justifies built-ins provide
scoped contextualized reasoning. Figure 4 provides an example of the use of air:justifies
in order to prove that Maury performs an appropriate role, as defined in a separate

@forAll :LOG, :RULE, :FUNCTION .

bc:CheckAppropriateRole a air:Belief-rule;
air:if {

({ :R a ex:Requester; rdf:type :ROLE. :G foaf:member :R. }. :RESULTS)
log:conjunction :LOG.

<http://bigcity.example.com/bcrbac.n3> log:semantics :RULE.
((:LOG) (:RULE)) air:justifies

{ :R air:compliant-with bcpol:BigCityRBAC.
:R ex:authorized_role :FUNCTION . } .

} ;
air:then [

air:description (:R " is in an authorized role " :FUNCTION
" as defined by BigCity RBAC.");

air:assert { :REQUEST air:compliant-with :BigCityDissemination. } ;
] ;
air:else [

air:description (:R " performing function " :ROLE
" but is not in a permissible role

as defined by BigCity RBAC.");
air:assert { :REQUEST air:non-compliant-with :BigCityDissemination. } ;

] .

Fig. 4. Recursive Execution of AIR Rules: air:justifies may be used to recursively call rule
sets, as in this example where BigCityRBAC is executed from within CheckAppropriateRule and
log:includes is used to check the results of its execution.

rule, bcpol:BigCityRBAC (located at <http://bigcity.example.com/bcrbac.n3>).
AIR thus meets the second need of our hypothetical use case: that BigCity should be
able to reuse and execute rules defined in other documents.

4 AIR Justifications

Upon finalizing its reasoning results, the AIR reasoner produces a justification that con-
tains sufficient information to understand the decisions and actions made by the reasoner
and to debug the rules, if needed. We have developed a justification ontology based on
basic Proof Markup Language (PML) concepts [18]. The AIR operational semantics (as
described in Section 5) also define how this justification is generated by the reasoner. As
AIR justifications themselves are N3 data, they can be consumed by other reasoners in-
cluding AIR to evaluate the quality and trustworthiness of the results based on the rules
and data sources used.

4.1 Justification Ontology

The AIR justification ontology extends certain PML [18] concepts as shown in Fig-
ure 5. We use the PML-Lite vocabulary7 that represents a subset of PML and is mod-
eled as Events, which can be conveniently used for representing the AIR reasoning
steps. The AIR justification ontology consists of three main classes — pmll:Event ,
pmlj:Mapping and pmll:Operation . The pmll:Events may be categorized
into airj:BuiltinAssertion , airj:ClosingTheWorld , airj:ClosureComputation ,

7 PML-Lite - http://tw.rpi.edu/proj/tami/PML-Lite

Fig. 5. AIR Justification Ontology: PML concepts are enclosed in solid boxes and ovals, sub-
concepts and sub-properties are depicted in the boxes adjacent to the concept and property labels,
respectively.

airj:Dereference , airj:Extraction , and airj:RuleApplication events depending on
the operation performed.

The AIR reasoner computes the closure of input facts with respect to a given AIR
ruleset. An airj:ClosureComputation event captures this operation. The events of all
other types are all part of some airj:ClosureComputation event.

The input to an AIR ruleset may be contained in a set of N3 or RDF documents. These
documents, on the web or on a local machine, are dereferenced to retrieve their RDF repre-
sentation. This step is encoded as an airj:Dereference event. In the example in Figure 6,
the document located at <http://bigcity.example.com/record request log.n3> is
dereferenced to get the RDF graph :g1 in the :g0.

Apart from the input triples, there are RDF triples that are tautologically true.
Some of these are built-in assertions. In practice, built-in triples are created dynami-
cally. However, we abstract this process and represent it through airj:BuiltinAssertion
and airj:BuiltinExtraction events. The output of an airj:BuiltinAssertion event
is assumed to be the graph that contains all the true built-in assertions (potentially
unbounded in number) for the built-in function specified by the airj:builtin prop-
erty. The assertions needed to match rule conditions are then extracted from this
output in an airj:BuiltinExtraction event. The airj:Extraction event from which
airj:BuiltinExtraction is derived, is used to encode the step where a subgraph is ob-
tained from a graph. The input to airj:BuiltinExtraction event is also left implicit, but
may be determined by the airj:BuiltinAssertion event on which the extraction has an
airj:dataDependency .

In the example in Figure 6, to match the condition of :CheckCollaboratingPharma
it was required that the graph :BIGCITYDB include (among others) the triple
<http://bigpharma.example.com/> a ex:CollaboratingPharma. This was tested
using the log:include built-in. Using the abstract event :g2, we get all log:include

_:g0 a airj:Dereference ;
airj:source <http://bigcity.example.com/record_request_log.n3> ;
airj:outputdata _:g1 .

_:g2 a airj:BuiltinAssertion ;
airj:builtin log:includes .

Note, we use :BIGCITYDB as a short-hand for the graph bound to :BIGCITYDB in
:CheckCollaboratingPharma

In practice, :BIGCITYDB would be replaced with what the graph was bound to, rather
than remaining a URI.
_:g3 a airj:BuiltinExtraction ;

airj:dataDependency _:g2 ;
airj:outputdata { :BIGCITYDB

log:includes {
<http://bigpharma.example.com/> a ex:CollaboratingPharma ;

ex:sparqlendpoint <http://bigpharma.example.com/sparql> } } .

Other built-ins are asserted similarly...

_:g4 a airj:RuleApplication ;
air:rule :CheckCollaboratingPharma ;
airj:branch air:then ;
airj:dataDependency _:g0, _:g3 ;
More dependencies would be here to justify the
other built-ins in :CheckCollaboratingPharma.
airj:outputVariableMappingList (_:mapping1 _:mapping2) . # and so on

_:mapping1 a pmlj:Mapping ;
airj:mappingFrom :G ;
airj:mappingTo <http://bigpharma.example.com/> .

More mappings like this would be generated for each and every mapping
bound in the particular rule application.

Fig. 6. An AIR Justification: Part of the justification of Maury’s employment at BigPharma
as based on the rules provided in Figures 2. Note that for reasons of convenience, all events
generated have been assigned to blank nodes (e.g. :g0), but could just as easily be assigned to
automatically generated dereferenceable URIs in a local justification log.

triples that can be true, and extract the one relevant for reasoning in the :g3 event.
Thus, :g3 has a data dependency on :g2.

The airj:ClosingTheWorld event refers to a step of reasoning where triples other
than the ones in the input or those inferred so far, and rules other than those that are
active, are believed not to be true. An airj:ClosingTheWorld event has data and/or
flow control dependencies on all prior airj:RuleApplication events. These dependencies
are represented through airj:dataDependency and airj:flowDependency properties.

In Figure 7, another part of the justification begun in Figure 6, an
airj:ClosingTheWorld event, :g11, is used to close the world to decide
bc:CheckAppropriateRole so that it may follow the air:else action. This allows the rea-
soner to conclude that Maury is not performing a valid function that would justify releasing
the patient records from BigCity. Note that event :g11 has an airj:dataDependency
on all previous airj:BuiltinExtraction and airj:Dereference events which built the
now-closed knowledge base.

The airj:RuleApplication event represents a rule firing event. It is linked to the rule
that fired with the air:rule property. When a nested rule is activated, the known variable

_:g11 a airj:ClosingTheWorld ;
airj:dataDependency _:g0, _:g4 . # And others in the same way.

_:g12 a airj:RuleApplication ;
air:rule bc:CheckAppropriateRole ;
airj:branch air:else ;
...
airj:dataDependency _:g11 ;
airj:outputdata { <http://bigcity.example.com/record_request_log.n3#mauryRequest>

air:non-compliant-with :BigCityDissemination . } .

Fig. 7. Justifying Maury’s rejection: Closing the world to assert air:else.

bindings are passed from the parent rule. The airj:RuleApplication event for a nested
rule has a special flow dependency, referred to as an airj:nestedDependency , on the
airj:RuleApplication event where the parent rule fired. The input variable bindings for
the nested rule are implicit and are the same as the output variable bindings of the parent.

When the condition of the rule is satisfied, variable bindings may be acquired, and the
air:then actions are effected. Otherwise, the air:else actions are effected. Which actions
are effected is declared using the air:branch property. The variable bindings are acquired
upon pattern matching of the rule condition against the fact base, and declared using the
airj:outputVariableMappingList property. Any triples asserted when the rule fires are
declared using the airj:outputdata property and the event is annotated with natural-
language description specified by the air:description property. airj:RuleApplication
events also may have data dependencies on other events. The condition can be satis-
fied by triples from more than one input log, or by triples asserted in some of the prior
airj:RuleApplication events may. These events also have flow control dependencies on
prior airj:ClosingTheWorld events.

In the example given in Figure 6 and its continuation in Figure 7 we observe two
airj:RuleApplication events, :g4, using the rule :CheckCollaboratingPharma, and
:g12, using bc:CheckAppropriateRole. Neither rule application was a result of a nested

rule, so no airj:nestedDependency triples were generated. :g4 followed the air:then
path, and depended on information generated by dereferencing the log in :g0 and a built-
in asserted in :g3. :g12, in contrast, followed the air:else path by depending on closing
the world in :g11. This particular action asserted non-compliance, which is indicated by
the airj:outputdata property.

By manually or automatedly tracing the output data and rule dependencies from each
airj:BuiltinExtraction , airj:Dereference , or airj:RuleApplication event, we may
determine the order in which rules were applied and what data was used. This also allows
for the construction of meaningful, human-readable justification traces and interfaces [10].

4.2 Justification Generation

AIR supports justification generation for every action taken by the reasoner. When an
action is taken (either a graph pattern asserted or a rule activated), the action is annotated
with the identity of the rule and with either the matched subgraph or a list of components
known to be true under the closed world assumption. The operational semantics, described
later in Section 5, define how the justification is generated by the reasoner. The default

justification for an AIR conclusion is constructed by taking the union of annotations for
the conclusion and the rule in which the conclusion was asserted.

Though knowing the rules and facts from which a conclusion is derived is useful, it does
not describe what the rule was attempting to do. In order to provide natural-language
explanations, we allow air:descriptions to be added to air:actions. These descriptions
are English sentences and can contain variable values. The air:description property is
a list instance, where list items are enclosed in brackets and separated by commas. Each
list item can either be a string enclosed in quotes or a quantified URI variable. During
the reasoning process, each variable is replaced by its current value and inserted into the
description string. For example, the description of :CollaboratorRequestProcessing
from Figure 3 is a list consisting of two variables, :R and :Q and two strings — has been
confirmed to be employed at and which is an authorized collaborator.

...
@forSome _:g11 .
_:g11 a airj:RuleApplication ;

an air:flowDependency may be given.
airj:outputdata { <http://bigcity.example.com/record_request_log.n3#mauryRequest>
air:non-compliant-with :BigCityDissemination . } .

...

Fig. 8. Justification of Elided Rule: Justification for Maury’s rejection does not contain the
Elided-rule, :CheckAppropriateRole

Sometimes, the default justification can be unwieldy or very revealing, and needs to
be modified to hide trivial or sensitive information. AIR provides mechanisms to declar-
atively modify justifications generated by default. Rules in AIR may be declared to be
air:Hidden-rules or air:Elided-rules to suppress justifications for certain actions. The
detailed justifications for actions executed when an Elided-rule fires are suppressed, and
only the natural-language description is provided. The justification for actions executed
when a Hidden-rule or its descendants fire are suppressed completely. This flexibility
to control the level of details, at a rule-based granularity, helps the rule writers to adjust
the justification so that sensitive information is not revealed and so explanations are not
overly verbose. Nesting of rules can be used advantageously to split a rule’s conditions
across multiple rules when parts of the graph pattern refer to sensitive (or insignificant)
information, such that rules with sensitive conditions may be elided or hidden.

From our use case, Maury must be able to prove that he is authorized to act in an
appropriate role in order to access information from BigCity. It is entirely possible that
BigCity would desire that Maury not know what roles are allowed access, in order to
prevent later exploitation. In this case, bc:CheckAppropriateRole from Figure 4 could
be declared to be an Elided-rule such as bc:CheckAppropriateRole a air:Elided-
rule. As illustrated in Figure 8, the justification for Maury’s rejection would not contain
information about :CheckAppropriateRole.

Fig. 9. Example of AIR Rule Nesting

5 AIR Semantics

The procedural semantics of AIR describe how AIR rules fire and how inferences are made.
The AIR reasoner applies forward chaining reasoning to compute the closure of AIR rules
over the input data. When AIR rules fire, their actions, substituted with known variable
bindings, are effected. As a result, new rules may be added to the rule base, i.e. new rules
may be activated, and/or facts may be deduced. Initially the rule base contains all top
rules in the ruleset, and the fact base is made of the input facts. The rules in the rule
base are said to be active. The active rules whose conditions match the current state of
the world (fact base) are referred to as successful rules, whereas those active rules whose
conditions have no match are called failed rules.

AIR reasoning is performed in stages. In any given stage, the successful rules are given
priority over failed rules and their then-actions are effected before failed rules fire. When
all successful rules have fired the world is temporarily closed and the else-actions of all
the failed rules are fired simultaneously with the belief that the conditions of all the failed
rules are false. AIR reasoning enters the next stage once the failed rules have all fired. The
AIR closure is computed in a finite number of stages [13].

In order to illustrate rule nesting, we consider an arbitrary nesting shown in Figure 9.
Initially, i.e. before entering stage 1, only RuleA and RuleB are in the rule base. Then, if
the condition of RuleB is satisfied, RuleD would be active in stage 1. However, if in stage 1
RuleB doesn’t succeed, then RuleC will be added to the rule base after the world is closed
for stage 1, and will be active from stage 2. Now, in stage 2, if RuleC succeeds then RuleE

will become active in stage 2. Otherwise RuleF will be active from stage 3. Note that if
RuleB succeeds in later stages, say stage 3, then RuleD will also be active (in addition to
RuleC) from stage 3 onwards.

The declarative semantics of an AIR program are defined through translation to strati-
fied Logic Programs [20]. The AIR-closure computation is polynomially-complete in data-
complexity and exponentially-complete in program-complexity, where data complexity is
the complexity of computing the closure when the program is fixed and the facts are in-
put and program complexity is the complexity when the facts are fixed and program is
input [13].

Nesting introduces an ordering of rules that can be leveraged to encode fairly expressive
Logic Programs (LP) in AIR, such as Positive LP and a special class of stratified LP -
Positively Stratified Negatively Hierarchical LP [13]. Furthermore, SPARQL SELECT and
CONSTRUCT queries may be encoded in AIR and executed by the AIR reasoner [13].

6 Related Work

There are many rule languages and rule systems, some advanced and others at prototypical
levels. Examples of Web rule languages include N3Logic [4], NG [21], SILK [8] and SWRL8,
while some rule engines are Jess9, Jena10 and XSB [5]. Liang et. al. give a nice overview
of popular, and often advanced, rule systems [16].

Though N3Logic supports monotonic negation, AIR supports non-monotonic negation.
In comparison, NGs supports the well-founded (WF) negation, XSB support negation-as-
failure, and Jess supports non-logical negation. SILK supports WF non-monotonic nega-
tion as well as classical negation. Nesting of rules is unique to AIR amongst the systems
mentioned above. OPS/YES [22] extends the OPS5 [7] production rule system with many
features including that which allows matching in the actions. This is referred to as incre-
mental rule addition and AIR has a similar notion of rule nesting.

Amongst the above systems, only AIR provides justifications. The Ontonova system [1]
provides natural-language explanation of proof trees for conclusions by the Ontobroker,
through meta-inferencing. The meta-inferencing rules are defined for different rule instan-
tiations and applied over the logs generated by Ontobroker during the inferencing process.
The logs contain instantiated rules that were successfully applied and led to the derivation
of an answer. The defeasible reasoning system, DR-DEVICE, has a similar mechanism
for generating proofs[2]. Defeasible rules can be translated to XSB rules, and interpreted
by XSB. The XSB trace is processed and tagged with a proof schema. In the context of
OWL, a subset of the ontology that is sufficient for OWL entailment to hold is treated
as the justification for the entailment and algorithms exist to derive the minimal such
subset [9, 12]. Unlike the above systems, AIR supports syntax and semantics to provide
for the alteration of rule definitions, addition of natural-language descriptions and hiding
of portions of the justification.

Contextualized reasoning is important for Web rule languages because information on
the Web is often assumed to be incomplete or inconsistent, and its correctness is subject
to the trustworthiness of the source. [19] gives a formal definition of LPs with context and
scoped negation. AIR borrows its contextualized reasoning aspects from N3Logic. Other
than N3Logic and AIR, SILK supports contextualized reasoning. In SPARQL queries, the
query patterns can be restricted to selective named graphs, and as a result NGs naturally
supports contextualized reasoning.

The Rule Interchange Format (RIF) [14] has two major dialects — the Framework for
Logic Dialects (FLD) and the Production Rule Dialect (PRD). Unlike PRD, actions in AIR
cannot modify or remove facts, but they can add new production rules. However, because
of the former, AIR negation can be termed logical. RIF-FLD is an extensible framework
for rule-based languages, and includes the Basic Logic Dialect (BLD), which corresponds
to the definite Horn rules with equality and standard first order logic semantics. AIR is
neither more nor less expressive than BLD. AIR supports negation unlike BLD, but it
does not support function symbols that BLD does. Further, AIR has a rich set of built-ins.
SWRL is a function-free rule language limited to binary and unary predicates, and all its

8 http://www.daml.org/rules/proposal/
9 http://www.jessrules.com/

10 http://jena.sourceforge.net/

features, barring different-from, are covered by RIF-BLD. Therefore, AIR is at least as
expressive as SWRL. As mentioned earlier, PLPs can be encoded in AIR and therefore
OWL 2 RL11 inference rules can be encoded in AIR and used concurrently with other
rules.

Though several rule languages provide a subset of AIR’s features, AIR is unique in
its support of Linked Rules, its focus on justification (both generated by default and
declaratively modified), and its ability to objectively query the contents of Web resources
(both Web pages and SPARQL endpoints). For a more detailed comparison of AIR with
other rule languages, rule engines and rule systems, please refer to our technical report [13].

7 Summary and Future Work

We have found that AIR’s expressiveness and functionality allow it to easily capture real
world rules and policies while leveraging (Semantic) Web data and protocols. It supports
Linked Rules so AIR rules can be developed and re-used in a manner similar to Linked
Data, provides functions for scoped contextualized reasoning, and provides justification
for its inferences that can be used to evaluate the trustworthiness of its results. Though
our use case demonstrates how AIR can be used in collaborative environments, AIR has
also been used for information sharing12, for access control and policy management [10,
17], to secure SPARQL endpoints [6], to check the compliance of queries against privacy
policies [11] and as an accountability mechanism for checking whether audit logs comply
with data usage policy [23]. Thus far, our focus has been on studying the rule requirements
of open Web information systems, designing appropriate features in the rule language,
and implementing AIR-based systems. Moving forward we will work on handling conflicts
between rules and on enabling default behavior when none of the conditions of a RuleSet
match. We are also interested in understanding the performance and scalability of AIR
and plan to use or extend existing benchmarks [16].

References

1. J. Angele, E. Moench, S. Staab, and D. Wenke. Ontology-based query and answering in
chemistry: Ontonova @ project halo. In in Proceedings of the Second International Semantic
Web Conference (ISWC2003). 2003, pages 913–928. Springer Verlag, 2003.

2. N. Bassiliades, G. Antoniou, and G. Governatori. Proof explanation in the dr-device system.
In RR’07: Proceedings of the 1st international conference on Web reasoning and rule systems,
pages 249–258, Berlin, Heidelberg, 2007. Springer-Verlag.

3. L. Bauer, S. Garriss, and M. K. Reiter. Distributed proving in access-control systems. In
Proceedings of the 2005 IEEE Symposium on Security and Privacy, pages 81–95, May 2005.

4. T. Berners-Lee, D. Connolly, L. Kagal, Y. Scharf, and J. Hendler. N3logic: A logical framework
for the world wide web. Journal of Theory and Practice of Logic Programming, 2007.

5. W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs. J.
ACM, 43(1):20–74, 1996.

11 http://www.w3.org/TR/owl2-profiles/#OWL 2 RL
12 http://dig.csail.mit.edu/2009/DHS-fusion/

6. M. Cherian, L. Kagal, and E. Prud’hommeaux. Policy mediation to enable collab-
orative use of sensitive data. In The Future of the Web for Collaborative Science
(HCLS/WWW2010/Workshop), April 2010.

7. C.L. Forgy. The OPS5 user’s manual. Technical report, Carnegie-Mellon University, Dept.
of Computer Science, 1981.

8. B. Grosof, M. Dean, and M. Kifer. The silk system: Scalable and expressive semantic rules.
In 8th International Semantic Web Conference (ISWC2009), October 2009.

9. M. Horridge, B. Parsia, and U. Sattler. Laconic and precise justifications in owl. In In Proc.
of ISWC-08, volume 5318 of LNCS, pages 323–338, 2008.

10. L. Kagal, C. Hanson, and D. Weitzner. Using dependency tracking to provide explanations
for policy management. In IEEE Policy 2008, 2008.

11. L. Kagal and J. Pato. A policy-awareness architecture for preserving privacy based on se-
mantic policy tools. IEEE Security and Privacy Sp Issue on Privacy Preserving Sharing of
Sensitive Information (PPSSI), 2010.

12. A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin. Finding all justifications of owl dl entail-
ments. In ISWC’07/ASWC’07: Proceedings of the 6th international The semantic web and
2nd Asian conference on Asian semantic web conference, pages 267–280, Berlin, Heidelberg,
2007. Springer-Verlag.

13. A. Khandelwal, J. Bao, I. Jacobi, L. Ding, and L. Kagal. Analyzing the air language :
A semantic web rule language. Technical report, Dept. of Computer Science, Rensselaer
Polytechnic Institute, 2010.

14. M. Kifer. Rule interchange format: The framework. In RR ’08: Proceedings of the 2nd In-
ternational Conference on Web Reasoning and Rule Systems, pages 1–11, Berlin, Heidelberg,
2008. Springer-Verlag.

15. V. Kolovski, Y. Katz, J. Hendler, D. Weitzner, and T. Berners-Lee. Towards a policy-aware
web. In In Semantic Web and Policy Workshop at the 4th International Semantic Web
Conference, 2005.

16. S. Liang, P. Fodor, H. Wan, and M. Kifer. Openrulebench: An analysis of the performance of
rule engines. In 18th International World Wide Web Conference (WWW2009), April 2009.

17. C. man AuYeung, L. Kagal, N. Gibbins, and N. Shadbolt. Providing access control to online
photo albums based on tags and linked data. In AAAI Spring Symposium on Social Semantic
Web: Where Web 2.0 Meets Web 3.0, March 2009.

18. D. L. McGuinness, L. Ding, P. P. da Silva, and C. Chang. Pml 2: A modular explanation
interlingua. In AAAI 2007 Workshop on Explanation-aware Computing, 2007.

19. A. Polleres, C. Feier, and A. Harth. Rules with contextually scoped negation. In Proc. 3 rd
European Semantic Web Conf. (ESWC2006, pages 332–347. Springer, 2006.

20. T. C. Przymusinski. On the declarative semantics of deductive databases and logic programs.
pages 193–216, 1988.

21. S. Schenk and S. Staab. Networked graphs: a declarative mechanism for sparql rules, sparql
views and rdf data integration on the web. In WWW ’08: Proceeding of the 17th international
conference on World Wide Web, pages 585–594, New York, NY, USA, 2008. ACM.

22. M. Schor, T. Daly, T. Lee, and B. Tibbitts. Advances in rete pattern matching. In Fifth
National Conference on Artificial Intelligence, 1986.

23. D. Weitzner, H. Abelson, T. Berners-Lee, J. Feigenbaum, J. Hendler, and G. Sussman. In-
formation accountability. pages 82–87, June 2008.

A APPENDIX: Namespaces

In this paper, we refer to the namespaces defined in Figure 10.

@prefix air: <http://dig.csail.mit.edu/2009/AIR/air#>.
@prefix airj: <http://dig.csail.mit.edu/2009/AIR/airjustification#>.
@prefix log: <http://www.w3.org/2000/10/swap/log#>.
@prefix math: <http://www.w3.org/2000/10/swap/math#>.
@prefix string: <http://www.w3.org/2000/10/swap/string#>.
@prefix sparql: <http://www.w3.org/2000/10/swap/sparqlCwm#>.

@prefix pmlj: <http://inference-web.org/2.0/pml-justification.owl#>.
@prefix pmlp: <http://inference-web.org/2.0/pml-provenance.owl#>.
@prefix pmll: <http://inference-web.org/2.0/pml-lite.owl#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.

@prefix ex: <http://bigcity.example.com/ont#>.
@prefix bcc: <http://bigcity.example.com/bccrule#>.
@prefix bnc: <http://bigcity.example.com/bcrule#>.
@prefix bc: <http://bigcity.example.com/bigcitydissemination#>.
@prefix bcpol: <http://bigcity.example.com/bcrbac#>.
@prefix : <http://bigcity.example.com/bigcitydissemination#>.

Fig. 10. Namespaces Used

