
Policy Interoperability Through Rules
Interchange Format

Jie Bao1, Lalana Kagal2, and Vladimir Kolovski3

1 Rensselaer Polytechinc Institute
Troy, NY 12180

baojie@cs.rpi.edu
2 MIT CSAIL

Cambridge, MA 02139
lkagal@csail.mit.edu

3 Semantic Technologies Group, Oracle Corporation
Nashua, NH 03062

vladimir.kolovski@oracle.com

Abstract. With policy management being a popular mechanism for
providing flexible security, the number of policy languages being pro-
posed is constantly increasing. The use of disparate policy languages
makes collaboration between and integration over applications and do-
mains difficult and requires prior negotiation and agreement between
them. These problems could be eased by the adoption of a standard
policy language. Users, however, should not be forced to conform to a
single language as that will reduce their flexibility and autonomy. Rule
Interchange Format (RIF) is a W3C recommendation that allows the
exchange of rules between rule systems. We propose creating a policy
interchange language grounded in RIF. This policy interchange language
will allow systems to use their own policy language while still collabo-
rating securely with those that do not. We plan to study several pol-
icy languages and capture their main functionality in RIF with an aim
to identifying their common subset. Our intuition leads us to believe
that a generalized form of this common subset, expressed in RIF, will
act as a policy interlingua. eXtensible Access Control Markup Language
(XACML) is an OASIS standard language for the specification of access
control policies and has been deployed in many Web-based systems. As
a first step, we show how the semantics of XACML can be expressed
in RIF. In this paper, we present our translation between XACML and
RIF that allows XACML and non-XACML systems to collaborate while
maintaining their security policies.

1 Introduction

XACML [3]
contributions?

– 1
– 2
– 3

2 Motivating Example

show a use case of rule interoperability

3 XACML

XACML 3.0
Some features not covered: obligation, delegation, operation parameters (e.g.,

the CombinedDecision attibute in Request)
Also not covered in the syntax: annotations, versioning, defaults, status etc.
Simplified abstract syntax of XACML 3.04:

PolicySet

Policy Combining Algorithm

Policy

ObligationExpression

Target

Rule Combining AlgorithmRule

EffectCondition

AnyOf

1
1

1
1

11

1

1..*

1

1

1

1

1

1

1

0..* 1

0..*

1

0..*

1 0..*

1

0..*

1

0..1

AllOf

1

1..*

AdviceExpression

1

0..*

1

0..*

1

0..*

1

0..*

Fig. 1. XACML language model (Figure 3 in [3])

More about functions, expressions and variables
Request matching etc
Decision - 4 possible result of a policy evaluation: ”Permit”, ”Deny”, ”Inde-

terminate” (unable to evaluate, e.g., due to missing attributes or), ”NotAppli-
cable” (no policy can be applied).

4 We use the W3C version of the EBNF grammar: http://www.w3.org/TR/REC-xml/
#sec-notation. Terminals are in the Italic font.

PolicySet ::= uriId PolicyCombiningAlg Target (PolicySet|Policy)*

Policy ::= uriId RuleCombiningAlg Target (VariableDefinition|Rule)*

RuleCombiningAlg ::= "deny-overrides"| "permit-overrides" | "first-applicable" |

"ordered-deny-overrides" | "ordered-permit-overrides" |

"deny-unless-permit" | "permit-unless-deny"

PolicyCombiningAlg ::= RuleCombiningAlg | "only-one-applicable"

Rule ::= strId Target? Condition? Effect

Target ::= (AnyOf)* /* disjunction */

AnyOf ::= (AllOf)+ /* conjunction */

AllOf ::= (Match)+

Match ::= uriId AttributeValue (AttributeDesignator|AttributeSelector)

Effect ::= "Permit" | "Deny"

Condition ::= Expression /* must be a Boolean function*/

Fig. 2. Policy and Rule Structure in XACML

Expression ::= Apply | AttributeSelector | AttributeValue |

Function | VariableReference | AttributeDesignator

Apply ::= Function Expression? /* function call*/

AttributeSelector ::= Category Path DataType MustBePresent

AttributeDesignator ::= Category Attribute DataType MustBePresent

Function ::= uriId /* e.g., integer-add and string-equal */

AttributeValue ::= Literal DataType

DataType ::= "string" | "boolean" | "integer" ...

MustBePresent ::= "true" | "false"

VariableDefinition ::= strId Expression

VariableReference ::= strId

Fig. 3. Expressions in XACML

Request ::= Attributes+

Attributes ::= Category Content* Attribute*

Attribute ::= uriId AttributeValue+

Category ::= "subject" | "resource" | "action" | "environment"

Content ::= XMLLiteral

strId ::= string

uriId ::= uri

Fig. 4. Other schema elements in XACML

4 Representing XACML Policies in RIF

RIF-PRD [1]

4.1 Mapping Policy and Rule Structure

4.2 Mapping Rules

4.3 Request Matching

4.4 Mapping Rule Combining Algorithms

4.5 Correctness of the Mapping

5 Related Work

Other XACML semantics, [2]
Cite ”the formal semantics of XACML” by Polar - why it is not a good one

for us
Argue about the generality of our approach - other languages that have a

logic program translation can be mapped to RIF in the similar way

6 Summary and Future Work

Acknowledgements

This work was carried out with funding from ??

References

1. C. de Sainte Marie, G. Hallmark, and A. Paschke. RIF Production Rule Dialect.
Recommendation REC-rif-prd-20100622, World Wide Web Consortium, June 2010.

2. V. Kolovski, J. Hendler, and B. Parsia. Analyzing web access control policies. In
WWW, pages 677–686, 2007.

3. E. Rissanen. eXtensible Access Control Markup Language (XACML) Version 3.0.
Committee Draft xacml-3.0-core-spec-cd-03-en, OASIS, March 2010.

