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Abstract. With policy management being a popular mechanism for
providing flexible security, the number of policy languages being pro-
posed is constantly increasing. The use of disparate policy languages
makes collaboration between and integration over applications and do-
mains difficult and requires prior negotiation and agreement between
them. These problems could be eased by the adoption of a standard
policy language. Users, however, should not be forced to conform to a
single language as that will reduce their flexibility and autonomy. Rule
Interchange Format (RIF) is a W3C recommendation that allows the
exchange of rules between rule systems. We propose creating a policy
interchange language grounded in RIF. This policy interchange language
will allow systems to use their own policy language while still collabo-
rating securely with those that do not. We plan to study several pol-
icy languages and capture their main functionality in RIF with an aim
to identifying their common subset. Our intuition leads us to believe
that a generalized form of this common subset, expressed in RIF, will
act as a policy interlingua. eXtensible Access Control Markup Language
(XACML) is an OASIS standard language for the specification of access
control policies and has been deployed in many Web-based systems. As
a first step, we show how the semantics of XACML can be expressed
in RIF. In this paper, we present our translation between XACML and
RIF that allows XACML and non-XACML systems to collaborate while
maintaining their security policies.

1 Introduction
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2 Motivating Example

show a use case of rule interoperability

3 XACML

XACML 3.0
Some features not covered: obligation, delegation, operation parameters (e.g.,

the CombinedDecision attibute in Request)
Also not covered in the syntax: annotations, versioning, defaults, status etc.
Simplified abstract syntax of XACML 3.04:
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Fig. 1. XACML language model (Figure 3 in [3])

More about functions, expressions and variables
Request matching etc
Decision - 4 possible result of a policy evaluation: ”Permit”, ”Deny”, ”Inde-

terminate” (unable to evaluate, e.g., due to missing attributes or), ”NotAppli-
cable” (no policy can be applied).

4 We use the W3C version of the EBNF grammar: http://www.w3.org/TR/REC-xml/
#sec-notation. Terminals are in the Italic font.



PolicySet ::= uriId PolicyCombiningAlg Target (PolicySet|Policy)*

Policy ::= uriId RuleCombiningAlg Target (VariableDefinition|Rule)*

RuleCombiningAlg ::= "deny-overrides"| "permit-overrides" | "first-applicable" |

"ordered-deny-overrides" | "ordered-permit-overrides" |

"deny-unless-permit" | "permit-unless-deny"

PolicyCombiningAlg ::= RuleCombiningAlg | "only-one-applicable"

Rule ::= strId Target? Condition? Effect

Target ::= (AnyOf)* /* disjunction */

AnyOf ::= (AllOf)+ /* conjunction */

AllOf ::= (Match)+

Match ::= uriId AttributeValue (AttributeDesignator|AttributeSelector)

Effect ::= "Permit" | "Deny"

Condition ::= Expression /* must be a Boolean function*/

Fig. 2. Policy and Rule Structure in XACML

Expression ::= Apply | AttributeSelector | AttributeValue |

Function | VariableReference | AttributeDesignator

Apply ::= Function Expression? /* function call*/

AttributeSelector ::= Category Path DataType MustBePresent

AttributeDesignator ::= Category Attribute DataType MustBePresent

Function ::= uriId /* e.g., integer-add and string-equal */

AttributeValue ::= Literal DataType

DataType ::= "string" | "boolean" | "integer" ...

MustBePresent ::= "true" | "false"

VariableDefinition ::= strId Expression

VariableReference ::= strId

Fig. 3. Expressions in XACML

Request ::= Attributes+

Attributes ::= Category Content* Attribute*

Attribute ::= uriId AttributeValue+

Category ::= "subject" | "resource" | "action" | "environment"

Content ::= XMLLiteral

strId ::= string

uriId ::= uri

Fig. 4. Other schema elements in XACML



4 Representing XACML Policies in RIF

RIF-PRD [1]

4.1 Mapping Policy and Rule Structure

4.2 Mapping Rules

4.3 Request Matching

4.4 Mapping Rule Combining Algorithms

4.5 Correctness of the Mapping

5 Related Work

Other XACML semantics, [2]
Cite ”the formal semantics of XACML” by Polar - why it is not a good one

for us
Argue about the generality of our approach - other languages that have a

logic program translation can be mapped to RIF in the similar way

6 Summary and Future Work
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