
A RESTful Messaging System for
Asynchronous Distributed Processing

Ian Jacobi and Alexey Radul
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
{pipian,axch}@mit.edu

ABSTRACT
Traditionally, distributed computing problems have been
solved by partitioning data into chunks able to be handled
by commodity hardware. Such partitioning is not possible in
cases where there are a high number of dependencies or high
dimensionality, as in reasoning and expert systems. This
renders such problems less tractable for distributed systems.
By partitioning the algorithm, rather than the data, we can
achieve a more general application of distributed computing.

Partitioning the algorithm in a reasonable manner may
require tighter communication between members of the net-
work, even though many networks can only be assumed to
be weakly-connected. We believe that a decentralized imple-
mentation of propagator networks may resolve the problem.
By placing several constraints on the merging of data in
these distributed propagator networks, we can easily syn-
chronize information and obtain eventual convergence with-
out serializing operations within the network.

We present a RESTful messaging mechanism for distribut-
ing propagator networks, using mechanisms that result in
eventual convergence of knowledge in a weakly-connected
network. By enforcing RESTful design constraints on the
messaging mechanism, we can reduce bandwidth usage and
obtain greater scalability in heterogeneous networks.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications,
Distributed databases; D.1.3 [Concurrent Programming]:
Distributed programming; H.3.4 [Systems and Software]:
Distributed systems

General Terms
Design, Reliability

Keywords
propagator networks, REST, distributed computing, consis-
tency, synchronization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WS-REST 2010, April 26, 2010; Raleigh, NC, USA
Copyright 2010 ACM 978-1-60558-959-6/10/04 ...$10.00.

1. INTRODUCTION
As cheap commodity computers have become more power-

ful, there has been a corresponding explosion in the number
of distributed computing efforts making use of large net-
works of commodity hardware to perform complex computa-
tion. Heteogeneous distributed systems such as SETI@home
[?], the related BOINC platform [?], and Google’s MapRe-
duce implementation [?], have been used to solve many oth-
erwise intractible problems in recent years.

Many of these efforts have relied on partitioning the do-
main of a problem into smaller, more tractable chunks. Indi-
vidual hosts then may perform identical processing on each
data partition to obtain partial results that are later merged
to produce a final result. Unfortunately, data partitioning in
this manner may not be feasible for all problems. Problems
that feature a high degree of dimensionality and have a high
number of data dependencies in the final solution are well
known to be difficult to partition. [?, ?]

Expert systems and reasoning engines, for example, may
depend on a sizeable number of logical statements to cal-
culate a meaningful answer to a query. Although reasoning
with just a few simple pattern-matching rules has been done
successfully with distributed algorithms [?], more complex
rule systems may have a larger number of dependencies in a
rule which may not fit into a single data partition.

One solution to such problems in reasoning is splitting
the algorithm into several “rounds” of reasoning over differ-
ent rules, but this merely trades space for time. Another
possible solution may not require such a trade off. In the
Rete algorithm [?, ?], a well-known algorithm for forward-
chaining reasoning, a network of nodes is used to separate
pattern-matching filters from a merge function over the out-
puts of several filters and other merge functions. Rather
than dividing the problem by partitioning data across mul-
tiple nodes, the Rete algorithm suggests that we divide the
algorithm itself.

One issue arises when applying this solution more gen-
erally: traditional distributed computing efforts like Map-
Reduce and BOINC assume a weakly-connected network of
nodes that only check in with a central server when a given
subtask is complete. Reducing communication in this way
strongly divides the domain so that tasks that rely on con-
tinuously updating inputs, such as reasoning, are infeasible.
A loosely-connected decentralized model could prove to be
more flexible than centralized architectures, but would be
dependent on more frequent communications. We believe
that a distributed variant of the data propagation model of
computation [?] may provide such an architecture.

Unfortunately, data propagation as generically described
makes no constraints as to how strongly connected the net-
work of propagators is. Many of the examples Radul presents
assume the existence of a tightly-linked computational plat-
form. This assumption may not hold in many distributed
computing scenarios that rely on a weakly-connected net-
work. By utilizing several key constraints on propagator
networks, we can safely eliminate this assumption; instead,
we need only assume reliable broadcast and convergence of
knowledge in a weakly-connected network, which is known
to be possible. [?, ?]

Such a significant change to the implementation of dis-
tributed systems also requires careful reconsideration of the
underlying technologies used by the systems. While tra-
ditional centralized models have tended to rely on simple
client-server protocols, a decentralized, data-driven model
like data propagation requires a different architecture. Given
that propagator networks gradually refine data in distinct
“cells”, we believe that treating such cells as resources in a
system using Representational State Transfer (REST) may
give a combination of flexibility and simplicity of design that
may not be possible with other implementations. Hence,
we have constructed a “RESTful” implementation of a dis-
tributed propagation system, named DProp1.

In this paper, we first introduce the concept of propaga-
tor networks in Section ??. Section ?? gives a brief overview
of the REST architecture, while Section ?? outlines the de-
sign choices we made to construct our RESTful implementa-
tion of propagator networks. We then discuss mechanisms
that reduce the incidence of race conditions (Section ??)
as well as possible security mechanisms within our system
(Section ??). Finally, we review related work in this field.

2. DATA PROPAGATION
The data propagation model of computation [?, ?] is a

concurrent message-passing programming paradigm. Data
propagation operates over a network of stateless compu-
tational “propagators” connected by a number of stateful
“cells” that may be used for both input and output.

Although superficially similar to traditional memory, cells
normally store a single partial value that may be refined,
but not overwritten. The initial state of a cell is an “empty”
partial value, in which no assumptions may be made as to
the cell’s contents. Propagators connected to the cell may
forward an update to it to add to the partial value stored
within.

Upon receiving an update to its contents from a neigh-
boring propagator, a cell will apply an appropriate merge
operation to unify the existing partial value with the new
information in the update. These merge operations must
not only be designed with consideration of the data-types
being merged, but also the intended contents of the cell, so
that a set intersection operation is not applied where a set
union is needed.

For example, if we assume we are constructing a reasoner
using propagator networks, a cell might wish to contain a
set of facts about animals. Upon receiving a new set of facts
about dogs via an update, the cell may merge it into its
own set by taking the union of the new dog facts with those
already known and set that as the new contents of the cell.

1DProp is currently available in a Mercurial repository at
http://dig.csail.mit.edu/hg/dprop/.

While a näıve implementation might merge facts using set
operations, we may use any arbitrarily interesting function
for the merge operation. If a cell properly supported reason-
ing about its contents, we could eliminate previously known
facts if they are subsumed by a new one. For example, ex-
plicit statements about two dogs, Rex and Fido, both having
four legs might be able to be eliminated if a new statement
stating that “all dogs have four legs” is learned. By allow-
ing arbitrary merge operations, we can obtain greater power
and expressivity in the propagator paradigm.

In order to ensure predictable computation in propagator
networks, all merge operations must have four key proper-
ties:

1. Idempotence: The number of times a particular up-
date is merged into a cell has no impact on the results
of the merge. Knowing a fact and being told that fact
again in an update doesn’t mean we know anything
new.

2. Monotonicity: Once a particular update is merged
into a cell, no update should be able to directly un-
merge that update. While the contents of a previous
update may be marked as contradictory or disproven,
it should not be possible to simply undo the update. In
short, things once learned by a cell are not forgotten.

3. Commutativity: The order of merge operations in
time is irrelevant. If we are told that“the cat is brown”
and “the dog is black”, we eventually know both facts
regardless of order.

4. Associativity: Updating a cell with two separate up-
date messages should have the same result as updat-
ing the same cell with a message that is the sensible
“merge” result of the two. For example, if we are told
that “Fido is at least 3 years old” and that “Fido is at
least 5 years old”, our knowledge should be the same
as if we had just been told “Fido is at least 5 years
old.”

Each of these properties has influenced the structure of
our system, and we will refer to them throughout the paper,
summarizing their effects at the end of the paper.

These constraints are not as restricting as they may seem.
Many functions that do not adhere to these constraints may
be retrofitted to work in a propagator system. Much work
in the design of distributed databases and internet proto-
cols has attempted to satisfy demands for serializability of
operations with the unreliability of the Internet, which may
result in data being received out of order or not at all. By
doing so, non-communtative operations may be performed
despite the implicit commutativity of of packet ordering in
the Internet [?, ?, ?, ?].

Once a cell’s content has changed, any propagators that
directly depend on the cell wake up and perform further
processing, as in Figure ??. These propagators may send
updates to additional cells, prompting yet more processing.
For example, suppose we have a pattern-matching propaga-
tor attached to a cell containing facts about animals. This
pattern-matcher will look at facts in that cell and then copy
those of the form “x is brown” to another cell containing
knowledge about brown animals. When some facts about
dogs are merged into the first cell, the pattern-matcher will
fire and any new knowledge about dogs that are brown will

1 < x < 3

y = x + 1

2 < y < 4

0 < x < 5

y = x + 1

1 < y < 6

A

1 < x < 3

y = x + 1

1 < y < 6

B C

Figure 1: A propagator system at work with time
increasing from A to C. Note that the updated con-
straints on x in the top cell in B cause the y = x + 1
propagator to wake up and update the constraints
in the bottom cell in C.

be sent as an update to the “brown animals” cell. It will
then merge that knowledge with the knowledge it already
holds, may cause other propagators to fire, and so on.

Propagator networks may be cyclic, leading to complex
loops and tail-recursive computation. As both single prop-
agators and groups of propagators are separated by cells on
their boundaries, we may also be able to treat a group of
propagators as a single abstract propagator in its own right.
In this way, we can actually instantiate them as needed,
allowing for recursive processing.

The separation of computation from data in propagator
networks explicitly modularizes computation. No time or-
dering is explicitly defined over the execution of propagators
other than implicit dependencies caused by the order of cell
changes. This makes propagator networks inherently con-
current and suggests a suitability to distributed systems.

3. THE REST ARCHITECTURE
Representational State Transfer, or REST, is an architec-

tural style rooted in the concept of hypertext and the HTTP
protocol.[?] The REST architecture aims to model resources
as entities strictly capable of being created, read, updated,
and deleted, also known as the CRUD operations. These
operations are to be carried out through the transfer of rep-
resentations of a resource. More complex operations may be
modelled in a RESTful system in terms of these more fun-
damental resource operations. By restricting the number of
operations that may be performed within the system, REST
ultimately reduces API complexity.

Five primary constraints serve as the basis of a RESTful
architecture, including:

1. a client-server model that separates data storage on a
server from local display or handling of content

2. a stateless design such that any communication con-
tains all information necessary for processing

3. cacheability of content to reduce network usage

4. uniformity of interface which reduces complexity of
client implementations

5. and a layered architecture that helps to modularize net-
work structure and treat it independently from the ap-
plication structure.

Applications with a RESTful design are commonly imple-
mented using HTTP, and ideally align the CRUD operations
of creation, retrieval, updating, and deletion with the HTTP
methods of PUT, GET, POST, and DELETE respectively.2

For example, the content of a RESTful resource delivered
with HTTP may be updated simply by submitting a POST
request containing the information needed to update the re-
source.

By relying on the common HTTP protocol, RESTful ap-
plications are not only able to rely on existing software li-
braries, but also make themselves useful within the context
of the World Wide Web. This allows applications to refer to
external resources through the use of the HTTP URIs that
identify them.

We choose to implement propagators using a RESTful ar-
chitecture for a number of reasons:

1. Propagation maps nicely to a RESTful model. The
stateless constraint on RESTful applications mirrors
the inherent statelessness of the propagators them-
selves and the atomicity and associativity of cell up-
dates make them particularly well-suited for imple-
mentation in a stateless architecture.

2. As cells are the only objects that contain state within
propagator networks, it seems appropriate to model
them as a class of resources in a RESTful architecture.
This reduces the complexity of the implementation.
This is only made more appropriate by the fact that
only two primary operations, reading and updating,
happen to cells.

3. The uniformity-of-interface constraint ensures that dis-
tributing propagators with RESTful techniques will be
an easily expandable system. While our implementa-
tion, DProp, relies on Python, one may envision a a
propagator network consisting of some nodes running
Python on Linux, others using JavaScript in a web
browser, and yet others using the .NET framework
in Windows. By adhering to a RESTful architectural
style, we ensure that such heterogenous systems are
more easily constructed.

Together, these facts make REST a suitable architectural
model for distributed propagation.

4. A RESTFUL PROPAGATION MODEL
As we intend to distribute the propagator model using

RESTful techniques, we must first decide what the nodes in
the physical network represent. We choose to treat hosts on
the physical network as containers of both propagators and
the cells that these propagators use to compute. In order
to link hosts and properly distribute computation, we may
simply use a simple network communication algorithm as a
propagator designed to synchronize the contents of cells on

2Many variations exist, including those that account for
web-browsers that may not support the PUT and DELETE
methods, and several caused by confusion about the precise
meaning of the PUT and POST methods.

multiple hosts. This may be done by simply forwarding any
new updates observed by one cell to all other cells.

Two primary mechanisms for achieving such synchroniza-
tion of cells seem to be likely candidate architectures for any
such system:

1. We may choose to use a client-server architecture. In
such a model, one host acts as the canonical server of
a cell, in charge of performing merges and maintaining
the canonical representation of the cell. All other hosts
wishing to use the data stored in the cell act as clients,
sending update messages to the server for its consider-
ation. These hosts must remotely fetch data from the
canonical representation following a successful merge.

While this model simplifies the cost of maintaining the
network with a simple star topology, use of a single
canonical server means that this model is prone to fail-
ure of a single node (the server) causing a halt to all
computation.

2. We may choose to use a peer-to-peer architecture. In
this model, every host interested in a cell acts as a
server for its own copy of that cell, and a client to other
copies. Provided that there is a reliable method of both
registering interest in a cell and forwarding updates to
all hosts, any update to a cell should eventually be
synchronized across all hosts.

This model is more difficult to maintain, as it may
have more complex network topologies, with a fully-
connected network being the most efficient, but is not
prone to complete failure caused by the failure of any
one node.

Choosing a peer-to-peer architecture need not imply
that we must abandon the client-server constraint spec-
ified by REST. Instead, we may consider the peer-to-
peer model to be an overlay model for how updates
are propagated to remote cells. Similar to how web
applications may invoke server-side methods that act
as clients to other servers, we may employ a server
and client acting in concert to manage a local copy of
a cell to achieve the desired peer-to-peer propagation
of updates.

While both models have their strengths and weaknesses,
we believe that the gains to be found through decentral-
ization, such as an increased tolerance of arbitrary network
topologies and increased redundancy of connections, out-
weigh the costs of ensuring that synchronization will even-
tually occur in all hosts in a timely manner. We thus chose
to implement DProp as a RESTful peer-to-peer-like system
for cell synchronization.

4.1 Resource Representations
In constructing a RESTful system, we should note the

kinds of objects modeled in our system as resources. Though
propagators are generally stateless and need not be repre-
sented as resources, we do need to model the cells and the
peers that have an interest in them.

The peer-to-peer model of synchronization introduces sev-
eral complications to what would otherwise be an intuitive
modelling of cells in a RESTful architecture. As mentioned
previously, RESTful architectures assume the constraint of

a client-server model. As a result, a resource must be iden-
tified uniquely only within the context of the server, rather
than globally. HTTP somewhat alleviates this problem by
providing a URI based not only on the local identifier but
also the identifier of the server. Taken together, these two
components may identify a resource globally.

This is ideal for our purposes, as we treat cells as being
contained on individual hosts, rather than spanning them.
This allows us to more easily identify distinct cells. A com-
plication arises when we wish to associate the cell with a spe-
cific “synchronization propagator,” which does span hosts.

If we were to simply implement this naming scheme, we
would lack a way to easily identify which particular group
of cells a cell is synchronizing with, short of listing those
cells in the group. This means we would lack a method
to describe relationships between different groups of cells
and may unnecessarily complicate the process of manually
analyzing a distributed propagator network.

We resolve this by giving each synchronization propagator
a universally unique identifier (UUID)[?] so that distinct
cells connected by such a propagator may be referred to with
a single identifier. We include the UUID in the URIs of the
copies of the cell, so we may identify the synchronization
group that each representation belongs to.

In order to more easily add peers to a network, we must
also represent each peer of a cell as a resource, or part of
a resource. These resources must be able to be created or
modified by new peers. Thus, each cell copy has a collection
of “Peers” containing the URIs of other peers of the cell.
This collection may then be modified as needed.

Each peer would only keep track of the peers it is inter-
ested in, so any of a number of arbitrary network topologies
of the peers is possible. Although the propagator network
needs only to be eventually connected, certain topologies
are more preferrable to others: an increase in the number of
links in the network will increase timeliness of update mes-
sages due to a reduced network diameter; it will similarly
increase failure tolerance due to replication of updates sent
on those links.

Our implementation is designed to maintain a clique. By
assuming existence of a clique, we may eliminate the addi-
tional complexity of routing update messages and still ensure
that the number of messages needed to propagate an update
across the network is O(n), the number of nodes. Even if a
clique is not maintained, our protocol will still ensure con-
vergence, although timeliness is not guaranteed for nodes
farther than distance 1 from the updated node.

4.2 Initializing a Cell
Creating a brand new cell and making it globally avail-

able is rather simple. After creating the local storage for
the cell and associating the corresponding merge operation
with it, the host need only mint an UUID for the new syn-
chronization propagator for the cell and assign it a URI.
Local updates may happen immediately following creation
of the local cell, while the URI of the cell as a resource must
be made available before others may synchronize.

Joining an existing network of cells is less trivial. First,
one must locate a copy of the remote cell to initialize from.
We will assume that this has already been done and a URI
has already been obtained. We make this assumption as we
believe the process of peer discovery to be independent of
the problems of initialization and synchronization.

New Peer

Create Cell {Peer}

Known Peer

UUID POST /Cells/UUID/Peers
{New-URI}

201 CREATED
{/Cells/UUID/Peers/New-URI}

GET /Cells/UUID

200 OK {Cell Content}

Merge Content

GET /Cells/UUID/Peers

200 OK {Peers List}

Merge Peers

Other Peers

POST
/Cells/UUID/Peers {New-URI}

201 CREATED
{/Cells/UUID/Peers/New-URI}

Figure 2: Connecting a new cell to an existing group of synchronized cells. Note that all actions are driven
by the connecting peer.

Basic initialization follows a simple algorithm, depicted in
Figure ??. A propagator wishing to connect to a remote cell
will first create the cell as above, but assign it the UUID of
the remote cell. Once the URI of the cell has been created,
the cell submits a POST request to the collection of “Peers”
of the cell held by the remote host. This POST request
will contain the URI of the new peer’s copy of the cell, and
serves to add the peer to the network of peers “listening” to
the cell. The remote peer will now be able to forward any
updates to the new peer.

The copy of the cell is then synchronized with the remote
peer by performing a GET request to the URI of the remote
host’s cell. The response will contain the contents of the cell
on the remote host, and may be merged into the local copy
of the cell. This may cause propagators local to the new
peer to fire. Further GET requests are made to initialize
the contents of the “Peers” collection from that known by
the remote host. This completes the copy of the cell.

After the local peer copies the collection of peers, it sub-
mits a POST request to each peer in the newly updated
“Peers” collection. This way, the new peer becomes visible
to all other peers in the network, much as it did to the ini-
tial remote peer. These POST requests will result in the
creation of a new, larger clique of synchronizing cells.

Note that we do not require any locking mechanism during
the initialization of the cell. The associativity and idempo-
tency constraints on the merge operation ensure that the
merge of data from the remote peer will only increase the
amount of knowledge known by the cell. The firing of lo-
cal propagators following the merge also ensures that any
change of the cell caused by the update will still generate
meaningful computation once something is known by the
cell.

4.3 Updating a Cell
As a propagator processes, it may send an update to an-

other cell. It will do so by sending an update on the local

host, which will then merge the new fact before causing any
connected propagators to fire. In a distributed propaga-
tor network, the custom merge operation is actually used to
complete a generic stub which additionally sends that fact as
a POST request to all cell copies known in the local peer’s
“Peers” collection, as in Figure ??. In this way, the local
peer that made the update also informs other peers about
the new fact it has learned and lets them handle merging it.

After receiving a POST request representing the update,
a cell will first confirm that the POST request came from
a known peer in its “Peers” collection, so that facts can-
not be tampered with by someone who is not trusted. If
the update does come from a known peer, it will merge the
newly received update message using the merge operation
and, unlike local merging, will not do any further notifica-
tion of nodes on the network. Finally, it will wake up any
local propagators to perform any computation, just as if the
update had been generated locally.

We assume that the merge algorithms on each peer are
identical. This allows us to only transmit the updates across
the network, rather than the fully merged data. Further-
more, the commutativity constraint on the merge operation
implies that the order in which messages are received is irrel-
evant to the contents of the cell. This eliminates the need for
synchronized timestamps across the entire network. Finally,
the clique embodied by the interested peers ensures that
the number of update messages sent is O(n), the number of
peers in the clique. This reduces communication within the
system as well as the diameter of the network for iterative
algorithms.

5. FAILURE RECOVERY
Although this basic system is functional at first glance,

there are a number of potential points of failure in the sys-
tem. The most obvious points of failure are links in the
physical network. While use of HTTP over TCP makes the

Updated Peer Other Peer

PUT /Cells/UUID {Update}

202 ACCEPTED

Merge ContentMerge Content

Update Cell {Update}

Wake Propagators...Wake Propagators...

Figure 3: Process of propagating an update to a cell. Note that all actions are driven by the updating peer.

system somewhat tolerant of communication errors, routing
irregularities and inconsistent uptime of connections must
still be accounted for to ensure eventual convergence of the
cell contents.

Recovery from such errors relies on the associativity and
idempotency constraints on the merge operation. These al-
low for contents of cells to be merged without having seen
the same update messages. Each peer interested in a cell
will occasionally perform a full synchronization of its con-
tents with all peers it is aware of. This synchronization
consists of a number of GET methods applied to the remote
peers’ cells and“Peers”collections. The results of these GET
requests may then be merged into the existing cell.

Synchronization in this way allows the local peer to de-
termine connectivity to its set of peers. It also allows it to
properly correct any possible loss of synchronization that
may have been caused by messages that did not manage
to reach the peer, without needing to resort to caching a
history of all update messages on each node.

This operation is likely to be quite wasteful of bandwidth,
as an identical resource representation may be obtained from
each peer. The RESTful constraint of cacheability proves
useful in reducing such waste. HTTP provides several head-
ers that assist with client-side caching. Each HTTP resource
may be served with an ETag, which uniquely identifies a
particular state of a resource. When a resource changes,
its ETag should change as well to uniquely identify the new
state.

Requests made to an HTTP server may provide the If-
None-Match header with a previously cached ETag value of
the cached resource. If the ETag of the resource matches the
If-None-Match header, the server may respond with a simple
“304 Not Modified” message and no content. This indicates
that the content in the client’s cache remains the most recent
version of the resource. We may thus use the ETag and If-
None-Match header in our GET requests to ensure that data
is only transferred when there is an inconsistency, rather
than on every GET.

Should a link fail and a peer of the network lose con-
nectivity, the loss of update packets between the peer and
other members of the clique does not mean that processing
is forced to halt. Assuming connectivity is achieved again,
the above synchronization operation will suffice to converge
the system. Furthermore, failure of a peer may simply be
treated as if all links to the node have failed and no further
processing is done. Reconnecting to the network will resolve
any global inconsistencies that arise.

6. REDUCING RACE CONDITIONS
While race conditions are a natural byproduct of a con-

current system, our implementation of distributed propaga-
tion has several features that help to reduce the number of
race conditions possible. The idempotency and commuta-
tivity constraints eliminate the harm from double updates
and out-of-order updates, while several other race conditions
are ameliorated by other means.

Most remaining race conditions are resolved through the
synchronization mechanism. For example, suppose that a
remote peer has not yet merged a new peer into its “Peers”
collection. Should it receive a POST message from the new
peer, it will drop the update as being from an unrecognized
host. However, if the new peer has been registered with
at least one other peer, the synchronization mechanism will
ensure that the remote peer that dropped the update will
not only eventually be made aware of the new peer, but also
of the update that was dropped.

Despite the power of synchronization, there still exist sev-
eral instances where inconsistencies may arise. For example,
a remote peer may be down when the local peer attempts
to connect, or the desired cell may not exist on that remote
peer. In this case, the local peer is never able to properly join
the network in the first place, and may be inconsistent with
the network from the start. The addition of a mechanism
that allows connecting to a cell through alternate peers, or
simply retrying such connections may allow the local peer
to connect to the cell anyway, after which the synchroniza-
tion mechanism will resolve any inconsistencies between the
disconnected cell and the other cells.

7. SECURITY
A practical distributed propagator system must be able to

ensure the security of data within it. While a cell containing
animal facts may unworthy of security, a similar cell could
be used to share classified information which a government
has a vested interest in keeping secure.

As our implementation uses HTTP as the substrate for
operation, there are several possibilities for securing data.
We may choose to secure the protocol through the use of
SSL or TLS; we may also choose to secure the data by en-
crypting the contents of the cells themselves. We believe
that a combination of the two approaches is necessary to
achieve sufficient security.

Encryption of the protocol with SSL or TLS will defend
communications against man-in-the-middle attacks and pro-
vide a mechanism for non-interactive authentication. How-

Constraint Benefit
Idempotence (with associativity) removes need for locking on cell initialization

(with associativity) permits synchronization procedure to simply exchange knowns
Associativity (with idempotence) removes need for locking on cell initialization

(with idempotence) permits synchronization procedure to simply exchange knowns
Commutativity removes need for global timestamps

removes timeliness constraint on communications
Monotonicity removes need to account for deletion of information

allows for computation of results using partial knowledge

Table 1: Benefits of the four constraints on the merge operation within this synchronization system

ever, SSL/TLS itself is insufficient as multiple distinct prop-
agators may use the same port on the server to host their
cells. As SSL/TLS certificates are presented before the cell
itself is requested, it is difficult to confirm that a particular
cell is actually “maintained” by any particular user on the
shared instance, such as in the following scenario:

Assume that Alice wishes to connect to an intermittently
available cell operated by Bob. Bob’s cell is hosted on a
DProp peer that he shares with Eve. If Eve was aware of
the times when Bob’s cell was unavailable, she could create
a cell with the same URI and wait for updates from Alice.
Alice would be unable to distinguish whether the cell had
been created by Bob or by Eve, as the only mechanism for
authenticating the DProp peer is a server-wide certificate.
This means that the same identifying certificate is provided
to Alice upon connecting to the DProp peer, even if Bob
and Eve were to have separate client certificates for when
they sent updates to Alice.

There are a number of ways to resolve this problem. We
may enforce a permanent reservation system for cell iden-
tifiers, or instead have a secondary identifier used to con-
tain information about the cell’s owner. The most foolproof
method would be to encrypt the updates themselves. By
encrypting them, Alice and Bob could ensure that only the
propagator with the correct key would be able to decrypt
updates, despite the limited level of security granularity of-
fered by SSL/TLS.

While this double encryption requires additional overhead,
we cannot simply do away with SSL/TLS either. Without
SSL/TLS, the identity of the cells contacted could not be
encrypted without abandoning HTTP. By adding SSL/TLS
as an additional security layer below HTTP, we can ensure
that this meta-data is not subject to man-in-the-middle at-
tacks. As a result, we must perform double encryption if we
are to maintain compatibility with the HTTP standard.

8. RELATED WORK
The work presented in this paper bears strong similari-

ties to work done in the field of database replication. Basic
database replication approaches would be sufficient for a cell
synchronization system if we assumed that cells are nothing
more than simple databases with data rows that correspond
to the updates received by the cell. However, such tech-
niques tend to adhere to constraints that are unnecessary for
propagator networks, such as serializability, used in weighted
voting [?], and the non-monotonicity of row deletions.

Update propagation mechanisms for database replication,
such as those developed for the Grapevine system [?] are
similar to the mechanisms described here. Like the synchro-
nization mechanism above, Grapevine seeks eventual con-

vergence of knowledge in the network, rather than guaran-
teeing immediate convergence. Unlike Grapevine, however,
we integrate the database more tightly with the messaging
system on a single host, rather than implicitly allowing for
their separation. Furthermore, our system has an explicit
mechanism for resolving inconsistencies as part of the syn-
chronization protocol.

The Bayou system [?] is in some ways more similar to
our system than Grapevine. Unlike Grapevine, it guaran-
tees convergence on a weakly-connected network. Neverthe-
less, its guarantee of eventual serializability of updates leads
to the construction of a centralized system of “soft writes”
which our system neither requires nor implements. Further-
more, Bayou again concerns itself with the problem of non-
monotonicity caused by deletions which is not required for
cell synchronization.

Singhal [?] provides an algorithm that is similar to the
synchronization protocol described here, allowing for the
synchronization of replicated databases through update dis-
tribution. However, like in Bayou, Singhal also adheres to
a serializability constraint that is unneeded for propagators.
Furthermore, Singhal does not assume a weakly-connected
network as DProp does.

Decentralization of RESTful practices has been proposed
in Khare and Taylor’s ARRESTED architecture [?]. While
its principles provide an important basis for our implemen-
tation, the ARRESTED architecture ultimately implements
several features that are unnecessary for a propagator net-
work, such as estimation, locking, and routing. As propa-
gator networks are constrained to be monotonic, there is no
need to guarantee receipt of an update or to estimate a cell’s
content.

9. CONTRIBUTIONS & FUTURE WORK
We have implemented and demonstrated a RESTful data

propagation system that permits useful distributed compu-
tation with a weakly-connected network. In doing so, we
avoid constructing a centralized model that is subject to
point failures. It is our belief that a system such as this will
prove to be a viable computational platform that provides
a greater flexibility than that offered by traditional client-
server architectures for distributed computing like that of
BOINC or other similar grid architectures.

We have also identified four constraints of the merge oper-
ation used in propagator networks, idempotence, monotonic-
ity, commutativity, and associativity. These constraints give
us a number of advantages, described in Table ??, that al-
low us to simplify our system and provide greater redun-
dancy and flexibility than existing approaches to distributed
databases.

Although DProp has been tested in small propagator net-
works to demonstrate the feasibility of RESTful distributed
propagation, we have not yet tested it in larger networks.
We also have not yet fully implemented the security proto-
col described in this paper and tested it within a working
propagator network. In order to test the system with a
large-scale application, we currently intend to implement an
application that manages information sharing with prove-
nance using the DProp framework.

We believe a more complete analysis of the proposed se-
curity mechanisms is warranted following implementation of
the security component in DProp, as we have only performed
a cursory inspection of possible security concerns with the
proposed system at this time. This analysis may require mi-
gration away from a strict HTTP implementation to avoid
the double encryption issue mentioned above, as well as any
other issues that arise with the use of SSL for this proto-
col. We are also unclear on the overhead that an HTTP
client-server model incurs for this implementation, although
initial tests of DProp have not exhibited significant issues
with overhead when propagating small updates.

10. ACKNOWLEDGEMENTS
We would like to thank Lalana Kagal, Gerry Sussman, Hal

Abelson and other members of the Decentralized Informa-
tion Group at MIT for their advice and criticism through-
out the entire process of refining the ideas discussed here
and putting them down on paper. We would also like to
acknowledge that this work was supported in part by the
National Science Foundation under NSF Cybertrust award
number CNS-0831442 and IARPA award number FA8750-
07-2-0031.

11. REFERENCES
[1] D. P. Anderson. BOINC: A system for public-resource

computing and storage. In Proceedings of the 5th
IEEE/ACM International Workshop on Grid
Computing, pages 4–10. IEEE Computer Society, 2004.

[2] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky,
and D. Werthimer. SETI@home: An experiment in
public-resource computing. Communications of the
ACM, 45(11):56–61, November 2002.

[3] B. Awerbuch and S. Even. Efficient and reliable
broadcast is achievable in an eventually connected
network. In Proceedings of the Third Annual ACM
Symposium on Principles of Distributed Computing,
pages 278–281. ACM, 1984.

[4] R. E. Bellman. Adaptive Control Processes: A Guided
Tour. Princeton University Press, Princeton, NJ,
USA, 1961.

[5] A. D. Birrell, R. Levin, R. M. Needham, and M. D.
Schroeder. Grapevine: An exercise in distributed
computing. Communications of the ACM,
25(4):260–274, April 1982.

[6] V. G. Cerf and R. E. Kahn. A protocol for packet
network intercommunication. IEEE Transactions on
Communications, 22(5):637–648, May 1974.

[7] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In Proceedings of the
6th Symposium on Operating System Design and
Implementation (OSDI 2004). USENIX Association,
2004.

[8] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic algorithms for replicated database
maintenance. In Proceedings of the Sixth Annual ACM
Symposium on Principles of Distributed Computing,
pages 1–12. ACM, 1987.

[9] R. B. Doorenbos. Production Matching for Large
Learning Systems. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, USA, January 1995.

[10] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

[11] C. L. Forgy. On the Efficient Implementation of
Production Systems. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, USA, February 1979.

[12] D. K. Gifford. Weighted voting for replicated data. In
Proceedings of the Seventh ACM Symposium on
Operating Systems Principles, pages 150–162. ACM,
1979.

[13] R. Khare and R. N. Taylor. Extending the
representational state transfer (REST) architectural
style for distributed systems. In Proceedings of the
26th International Conference on Software
Engineering, pages 428–437. IEEE Computer Society,
2004.

[14] P. Leach, M. Mealling, and R. Salz. RFC 4122: A
Universally Unique IDentifier (UUID) URN
namespace, July 2005.

[15] L. Parsons, E. Haque, and H. Liu. Subspace clustering
for high dimensional data: A review. ACM SIGKDD
Explorations Newsletter, 6(1):90–105, 2004.

[16] A. Radul. Propagation Networks: A Flexible and
Expressive Substrate for Computation. PhD thesis,
Massachusetts Institute of Technology, 2009.

[17] A. Radul and G. J. Sussman. The art of the
propagator. Technical Report
MIT-CSAIL-TR-2009-002, MIT Computer Science
and Artificial Intelligence Laboratory, January 2009.

[18] M. Singhal. Update transport: A new technique for
update synchronization in replicated database
systems. IEEE Transactions on Software Engineering,
16(12):1325–1336, December 1990.

[19] D. B. Terry, M. M. Theimer, K. Petersen, A. J.
Demers, M. J. Spreitzer, and C. H. Hauser. Managing
update conflicts in bayou, a weakly connected
replicated storage system. In Proceedings of the
Fifteenth ACM Symposium on Operating Systems
Principles, pages 172–182, Copper Mountain, CO,
USA, 1995. ACM.

[20] J. Urbani, S. Kotoulas, E. Oren, and F. van Harmelen.
Scalable distributed reasoning using MapReduce. In
Proceedings of the ISWC ’09, volume 5823 of LNCS.
Springer, 2009.

