
From Truth Maintenance to Trust Management
on the Semantic Web ?

Lalana Kagal1, Ian Jacobi1, and Ankesh Khandelwal2

1 MIT CSAIL
Cambridge, MA 02139

{lkagal, jacobi}@csail.mit.edu
2 Rensselaer Polytechnic Institute

Troy, NY 12180
ankesh@cs.rpi.edu

Abstract. The Semantic Web is a decentralized forum on which anyone
can publish their structured data or extend and reuse existing data. This
inherent openness of the Web raises questions about the trustworthiness
of Web data — which data sources to trust, what data of these sources
to trust, how to make declarations about trust, how to use these decla-
rations to calculate trust, etc. This paper does not propose a new trust
management model or mechanism. Instead, it shows how AIR, a Web
rule language, can be used to develop different kinds of trust models to
address trust issues of the open Web. The AIR rule language is based
on Semantic Web technologies and uses truth maintenance to track how
inferences are deduced. It has several useful features that can be used to
model trust of data sources, data, and rules as well as inferences made
by rules. It also reasons over this information to make further inferences.
AIR generates justifications for all inferences made, allowing the trust-
worthiness of inferences to be evaluated by consumers of this data. In
this paper, we provide an overview of AIR and illustrate how it can be
used for trust management using an example from the financial domain.

1 Introduction

The Semantic Web provides technologies for rendering machine-readable data
on the Web. These technologies include the Resource Description Framework
(RDF) [3], a standard data model, RDF Schema (RDFS) [6], a language for de-
scribing vocabularies such as class and property hierarchies using RDF, and the
Web Ontology Language (OWL 1 & 2) [2, 1], an ontology language for expressing
all kinds of domain knowledge, including complex relationships between classes
and properties. Much of this data is generated and maintained by multiple indi-
viduals or organizations in a decentralized manner over the Web, with incentives
for reuse. This form of data, also known as Linked Data [4], is interconnected
but spatially dispersed. Rules must be able to dynamically traverse this web of
? This work was supported in part by NSF Cybertrust award number 04281, IARPA

award number FA8750-07-2-0031, and AFOSR award number 6921570.

data to obtain additional facts, if required, to support conclusions. Given the
openness of the Web, however, the reliability of data depends on trustworthi-
ness of the source, the maintainer of the data, the last date it was updated, etc.
For example, there might be multiple Friend Of a Friend (FOAF)3 files for Tim
Berners-Lee that describe his social profile in RDF, however, the one that is
most trusted is the one available at the W3C website. This is due to the trust-
worthiness of the source, W3C. Things that are deduced from data sources also
have derived trustworthiness from those of the sources and of any rules used in
the deduction. In this work, we consider different aspects of trust-based usage
of Web data including associating trust with rule-based deductions.

AIR (Accountability In RDF) is a Semantic Web-based rule language. It
provides a version of production rules that can exist on separate Web servers
but can be linked together, also called nested rules, allowing for modular de-
velopment [13]. This modularity and nested activation reflect how rules in laws,
security policies, business rules and work-flows are defined. AIR is represented in
N3 [3], a human-readable representation of the RDF data model, and supports
a rich set of functions for selectively accessing trusted content from the Web as
well as cryptographic, string, and math operations. Furthermore, AIR supports
contextually scoped reasoning, i.e. rule conditions can be scoped to be satisfied
against different datasets or against deductions from different rules and datasets.
Note that these datasets and rules can be specified in a rule definition, and can
be dynamically selected, such as through the use of trust metrics.

The AIR reasoner provides detailed justification (explanations) for deduc-
tions by using a Truth Maintenance System, which keeps track of the logical
structure of a derivation. The justification gives the details of the rules that
fired, the order in which they fired, and the data sources that contributed to
the satisfaction of a rule condition. This information is particularly useful when
evaluating the trustworthiness of an inference.

We may have different degrees of belief for rules and data and may specify
trust values that represent those degrees. These trust values can be used when
the rules are defined and may be incorporated in the rule condition such that
only those inferences that can be trusted are deduced. These deductions can be
further filtered by the rules that use them based on new beliefs. In the latter case,
information on the rules that fired and the datasets used to make the deduction
may be obtained from the justification produced by the AIR reasoner.

This paper is structured as follows: we begin by introducing existing work
dealing with trust on the web. Then, in section 3, we discuss trust problems on
the web by giving an example. Section 4 gives an overview of the AIR language
and how reasoning is performed. In section 5 we describe how AIR can be used
for trust management on the Web. Finally, section 6 provides a summary and
directions for future work.

3 http://www.foaf-project.org/

2 Related Work

Well-known trust management systems such as PolicyMaker [16], KeyNote [5],
REFEREE [7], and Delegation Logics [15] view trust management as an au-
thorization problem. They define mechanisms for inferring whether a requester
(software or human agent) is permitted to perform a certain action or access a
certain resource based on a set of constraints defined by the action/data owner.
PolicyMaker, one of the first distributed trust management schemes proposed,
reasons over policies, a set of credentials, and a string describing the secure ac-
tion and can reply with a yes/no answer dependent on whether the credentials
meet/do not meet the requirements of the policy. It may also provide additional
requirements that would make the request acceptable. KeyNote is the next gen-
eration of PolicyMaker. The basic function of both PolicyMaker and KeyNote is
to be able to answer queries about authorization; neither is aimed at handling
trust issues of data or data sources. REFEREE was designed to facilitate security
decisions for Web browsing. It is similar to PolicyMaker as it allows its assertions
(credentials and policies) to be described in a programming language. Unlike Pol-
icyMaker, however, its trust management engine is able to fetch additional cre-
dentials while evaluating a request and can also perform cryptographic-signature
verification. Delegation Logic (DL) is a logic-based language for authorization in
distributed systems and is used to represent authorization through delegations.

Our approach is different from the above approaches in that it is focused on
evaluating the trustworthiness of data on the open Web and on allowing decision
making mechanisms about trust to be declaratively specified. Approaches most
related to ours are those which discuss how trust values for users and data sources
can computed such as [18, 10, 11, 14]. Richardson et al. enable users to maintain
trust for other users and provide functions to merge these values into trust values
for all users by leveraging the path of trust between users [18]. Kuter et al. allow
users to maintain trust values or trust estimates for data sources and provide a
probabilistic technique to use that information to compute a trust estimate for a
data source [14]. Our approach can be thought of as a meta-modeling approach
that allows different trust frameworks to be declaratively developed and possibly
combined. It provides a rule language, mechanisms for accessing the Web and
cryptographic, math, string and other related functions for specifying how trust
is assigned and calculated.

3 Trust Problems on the Web

There are two levels of trust we must have before we can establish a complete
determination of trust in Web reasoning: trust in data sources and trust in rules.
Together, these two levels of trust may be combined to synthesize a level of trust
in the inferences made by a reasoner. Trust in data sources forms the cornerstone
of trust on the Web, as no trust may be established without a firm foundation
in the data we utilize in making decisions. It is worthwhile to consider rules in
which the trust of a data source itself plays a role in determining whether a rule
may have matched.

Consider the following example: a stock broker, Big Bucks, Inc., makes buy
and sell recommendations to its clients based on an algorithm that looks at
various news, blog, and discussion forum feeds and then matches them against
desired criteria for each client. Isabel, a client of Big Bucks, has a fairly aggressive
portfolio and is willing to purchase any company for which a recommendation
is published. Unfortunately, not every stock analyst is trustworthy, as they may
have a vested interest in seeing certain stocks outperform others. As a result,
Isabel may require a high level of trust in the sources in which the recommen-
dations are published.

More complex policies must also be represented. Another customer of Big
Bucks, Jay, is more conservative than Isabel, and may requires two buy recom-
mendations from stock analysts (although he trusts their sell recommendations
more) and requires that the stock be above its 200 day moving average. Since
Jay trusts some statements more than other statements, we must be able to dif-
ferentially select trust values dependent on the type of data used from a source.

The second level of trust we must consider is that of trust in rules. Although
being able to trust base facts is an important factor in reasoning, many scenarios
may have some level of trust integrated into the rules themselves. Rules may
be probabilistic or produce only partially trustworthy results due to a lack of
certainty about the rule itself.

For example, some of Big Bucks’s customers may rely on rules that Big Bucks
itself has made available for use for its customers. Karl uses Big Bucks’s rules
as part of his decision making process, but does not entirely trust them, as Big
Bucks may have a conflict of interest in making suggestions to its customers. Karl
may wish to only partially trust Big Bucks’s rules, depending on the output of
other rules to corroborate Big Bucks’s conclusions as to what stocks are worth
buying or selling.

A framework that is flexible enough to capture these requirements would be
useful for trust management for Web data. In the following sections, we show
how AIR, a general Web rule language, can be used to express different kinds
of trust in data, data sources, and rules and combine them in various ways to
compute trust values for Web data.

@prefix s: <http://s.example.org/ontology#>.
@prefix b: <http://b.example.org/ont#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix : <http://src1.example.org/JohnAnalyst#>.

@forSome :X .

:X a <http://www.example.com/shoe>.
s:AmazonFootwear s:rec s:Buy.
a:BestPhone s:rec s:Buy.
a:ConArtist s:rec s:DontBuy.
:Weather :prediction :VeryHot.
b:SARS rdf:type b:PotentialVirusOutbreak.

Fig. 1. Content of an RDF Data Source

Fig. 2. AIR Rule Ontology

4 Overview of AIR

The rule language we use, AIR, is written in N3 [3], a syntax for representing
Semantic Web data based on the RDF abstract syntax. N3 makes use of a number
of basic concepts from RDF, including the concept of triples, which correspond
to the logic predicate holds(subject, predicate, object). The logical terms subject,
predicate, and object may be literals, existentially quantified resources known as
“blank nodes”, or opaque Uniform Resource Identifiers (URIs) denoted inside
angle brackets or using qualified names (QNames)4. For example, in Figure 1, the
triple, b:SARS rdf:type b:PotentialVirusOutbreak has b:SARS as subject,
rdf:type as predicate and b:PotentialVirusOutbreak as object. N3 extends RDF’s
abstract syntax by adding formula quoting and universal quantification. Figure 1
provides some examples of N3 triples. RDF documents consist of conjunctions
of these triples which may also be called graphs or formulas. Please refer to
http://www.w3.org/2000/10/swap/Primer for an overview of N3 and to the
Appendix for the list of namespaces used in the paper.

AIR is made up of a set of built-in functions and two independent ontologies
— the first is for the specification of AIR rules, and the second deals with describ-
ing justifications for the inferences made by AIR rules. The built-in functions
allow rules to access Web resources, query SPARQL Query Language for RDF
(SPARQL) endpoints [17], and perform scoped contextualized reasoning, as well
as basic math, string and cryptographic operations. While developing the rule
vocabulary, we focused on capturing how real world rules and laws are written to
allow them to be represented naturally in AIR. For the justification vocabulary,
our focus was on re-usability of justifications and on automated proof checking.
When given as input some AIR rules, defined in the AIR rules vocabulary, and
some Semantic Web data, the AIR reasoner produces a set of inferences that
4 http://www.w3.org/TR/REC-xml-names/#ns-qualnames

are annotated with justifications, described in the justification vocabulary. The
runtime input to AIR rules can be any RDF graph or an empty graph, if the
rules only access Web resources. In the following subsections we cover the AIR
rule ontology and built-in functions; the AIR reasoner and representation of AIR
justifications.

4.1 AIR Rules

The AIR rule vocabulary consists of several key classes and properties, shown
in Figure 2, which are identified by their QNames. air:Belief-rule is a class of
resources representing the set of all rules for which full justifications are made.
These rules may then have the properties air:if , air:then , and air:else asso-
ciated with them to represent the N3 pattern to be matched, and the actions
to take if the pattern matches, or does not match, respectively. air:then and
air:else actions may be described in terms of the facts they assert (using the
air:assert property) or the rules they cause to match next (using the air:rule
property). Figure 3 demonstrates how AIR rule vocabulary can be used to de-
fine Isabel’s simple rule about recommending stocks. The rule suggests that Is-
abel only buy stock in a certain company, air:assert { :Isabel s:shouldBuy
:COMPANY}, if a data source such as a stock analyst of a trust value greater
than or equal to 5, :TRUST1 math:notLessThan 5 , recommends that the
stock of that company be bought, :COMPANY s:rec s:Buy .

@forAll :SRC1,:TRUST1.

:IsabelBuyRule a air:Belief-rule ;
air:if {

:SRC1 log:includes { :COMPANY s:rec s:Buy . }.
:SRC1 t:trustvalue :TRUST1.
:TRUST1 math:notLessThan 5. }

air:then [air:assert { :Isabel s:shouldBuy :COMPANY . }] .

Fig. 3. Example AIR Rule: IsabelBuyRule uses the trust ontology described in
Figure 5.b to assign trust to data sources. Isabel only buys stock in a certain company
if a data source such as a stock analyst of a trust value greater than 5 recommends
that the stock of that company be bought

AIR supports several functions including cryptographic, math, string, list and
time functions. :TRUST1 math:notLessThan 5 is an example graph pattern
that uses the math:notLessThan built-in function. The subgraph of :TRUST1
math:notLessThan 5 matches if the value of :TRUST1, which is a variable, is
found to be greater than or equal to 5. Similarly, :KEY crypto:md5 :HASH
calculates the MD5 hash of :KEY and sets :HASH to it. AIR also includes functions
for signing and verifying signatures and certificates.

Traditionally, rule languages have been designed with the assumption that all
rules can use all the input data for deductions. However, this isn’t very desirable

in a Web rule language, especially for trust-based deductions. As we will also
see through our examples, different rules may require restricting of scope of
applicability to a subset of input data or documents, based off belief in the data
or documents. Sometimes the data is not just defined existentially but also has an
intentional component, defined through rules (which we may call int-def-rules).
In order to access the complete data we must be able to access the extensional as
well as intentionally-defined data, without risking unintended application of int-
def-rules to the entire input data. Note that the two scenarios described above
are different aspects of contextually scoped reasoning. AIR includes functions
that are useful in manipulating remote data, and that support contextually
scoped reasoning such as log:semantics, log:includes and air:justifies built-
in functions.

The log:semantics built-in fetches a document and returns its represen-
tation as an N3 graph. This N3 graph may then be used in conjunction with
the log:includes and log:notIncludes built-ins to determine whether a sub-
graph is, or is not, present in the graph. These log built-ins can be used to
selectively access content from Web resources. air:justifies is a particularly
powerful built-in function that executes some external AIR rules against some
Semantic Web data and checks whether they produces a certain RDF graph. It
returns a graph containing both the inferred results as well as the justification
of the facts. In Figure 6, air:justifies is used to execute a set of rules and the
inferred recommendation is only accepted if the inference was made by a trusted
rule. SPARQL queries can be executed from within AIR rules using sparql built-
ins. SPARQL CONSTRUCT queries may be sent to SPARQL endpoints using
the sparql:queryEndpoint property assertion, and subgraph patterns may be
searched for in the graph returned by the endpoint.

4.2 AIR Reasoner

A deductive reasoning system derives conclusions from previous deductions or
premises by the application of deductive rules. For any given conclusion, it is
useful to know the specific set of premises that it was derived from; this set is
called the set of dependencies for the conclusion. Dependency tracking is the
process of maintaining dependency sets for derived conclusions.

Some dependency-tracking mechanisms provide additional features. For ex-
ample, a Truth Maintenance System (TMS) keeps track of the logical structure
of a derivation, which is an effective explanation of the corresponding conclusion.
Another useful feature, also provided by a TMS, is the ability to assume and re-
tract hypothetical premises. There are several reasons why dependency tracking
is useful for trust management systems: (i) the dependency set for a result pro-
vides a natural focus when trying to solve policy compliance problems, and (ii)
it can provide a concise explanation for a result. This is essential for confirming
that a trust framework is correctly modeled. It can also help identify situations
where a framework is having unanticipated or undesirable consequences.

AIR uses a Truth Maintenance System as the dependency tracking mecha-
nism [12]. The TMS provides considerable power in a very simple mechanism;

Fig. 4. Ontology for description of a rule firing event

its primary cost is the memory required to record the structure of a derivation.
Although the TMS technology was invented in the 1970s [8], and recent work in
applying truth maintenance systems to problem solving was done in the 90s [9],
it is not well known outside the artificial intelligence community.

Our reasoner is a deductive reasoning system, where condition of a rule,
which is production-rule like, is a pattern to be matched against a set of believed
statements. When the pattern matches, or it fails to match, the rule’s action is
performed. Typically the action asserts new beliefs, causing them to be added to
the set of believed statements. When something is added to the belief set, it is
associated with a justification for its belief. In the case of a simple statement of
fact, there is a trivial justification that the statement is an assumption. A derived
statement has a justification based on the inputs used to make the derivation.

In such a simple rule system, all of the dependency information is implied
by the rules themselves. If a new belief is asserted by a rule’s action, then its
justification is the set of statements that matched the rule’s pattern. More pre-
cisely, we believe the asserted statement if and only if we believe every one of
the matched statements. Additionally, the justification records an identifier for
the rule; this identifier together with the matched statements provide all the rel-
evant information about the particular deduction step just performed. Typically
these deduction steps build on one another, resulting in a tree-like justification
structure for any given belief, in which the belief is the trunk of the tree and the
assumptions are the leaves. This tree structure is a complete explanation of the
support for the belief.

The afore-mentioned dependencies are captured through an Event based
ontology. There is an event for every important operation performed during
reasoning - Dereference , BuiltinAssertion , BuiltinExtraction , RuleAp-
plication and ClosingTheWorld .

Dereference is used to relate the documents, of both data and rules, with
their graph representations. The built-in triples are premises and they are com-
puted as needed by the reasoner. The output data of the abstract event Builti-
nAssertion is assumed to be all the triples that hold for a particular built-in.

Ontology Type Ontology Definition Example Assignments

a. Simple binary
trust

TrustedSource rdf:type rdfs:Class. Un-
TrustedSource rdf:type rdfs:Class

<http://src1.example.org> rdf:type Trust-
edSource. <http://srcx.example.org>
rdf:type UnTrustedSource

b. Trust value trustvalue rdf:type rdf:Property. <http://src2.example.org> trustvalue 8.
<http://src1.example.org> trustvalue 2

c. Qualified trust trust rdf:type rdf:Property; range Trust-
Val. tval rdf:type rdf:Property; domain
TrustVal. tpattern rdf:type rdf:Property;
domain TrustVal.

<http://src1.example.org> trust [tval
8; tpattern { :VARIABLE s:rec s:Buy}
]. <http://hospital.example.org> trust
[tval 99; tpattern { :VAR1 rdf:type
h:PotentialVirusOutbreak; h:duration
:VAR2 }]

d. Trust associ-
ated with rules

trustvalue rdf:type rdf:Property <http://bigbucks.example.com/rules
#BuyRule> trustvalue 7

Fig. 5. Example Trust Declarations for Data Sources and Rules

The specific triples that were computed are represented as outputdata of the
BuiltinExtraction event, which refers to the abstract operation of extracting
the triple from all the facts.

Firing of a rule is captured as a RuleApplication event. Figure 4 describes
various properties associated with a RuleApplication event. The rule-id is
given by the air:rule property. Whether the then or else action fired is de-
scribed using airj:branch . If the then branch fired then the subset of data that
satisfied the condition is declared using airj:matchedgraph . The else actions
fire only if no then actions can be fired for all other rules. Before the else ac-
tions actually fire, the world is closed (temporarily) assuming all the failed rule
conditions to be false. The closing of world is captured using the ClosingTh-
eWorld event. When a nested rule fires a nestedDependency is established
with the firing of the parent rule event, which activated the nested rule. The
triples asserted when the rule fired, are associated with the air:outputdata
property.

In Figure 7 we filter those buy recommendations for Karl, :Karl
s:shouldBuy :COMPANY , that are supported by a trusted :RULE defined in
http://bigbucks.example.com/rules. The rule searches the justification re-
turned by AIR reasoner for a RuleApplication event, :RULEAPPEVENT, such
that some :RULE fired and asserted the buy recommendation.

5 AIR and Trust Management

As AIR is a Semantic Web-based rule language it is able to reason over different
semantic representations for trust. The language does not insist on any specific
representation of trust and allows the user/system to provide a representation
that best captures their requirements. Figure 5 provides some examples of how
trust could be assigned to data sources. Figure 5.a is a simple way of representing
binary trust. It defines 2 classes, TrustedSource and UnTrustedSource, and a

@forAll :SRC1, :SRC2, :TRUST1, :TRUST2, :COMPANY, :PRICE, :MA200.

:JayBuyRule a air:Belief-rule ;
air:if {

:SRC1 log:includes { :COMPANY s:rec s:Buy . } ;
t:trust [t:pattern { :VARIABLE s:rec s:Buy . } ;

t:value :TRUST1] .
:SRC2 log:includes { :COMPANY s:rec s:Buy . } ;

t:trust [t:pattern { :VARIABLE s:rec s:Buy . } ;
t:value :TRUST2] .

:TRUST1 math:notLessThan 7 .
:TRUST2 math:notLessThan 7 .
<http://stocks.example.com/ticker> log:includes {

:COMPANY s:stockPrice :PRICE ;
s:TwoHundredDayMA :MA200 . } .

:PRICE math:greaterThan :MA200 .
} ;
air:then [air:rule :CompareSources] .

:CompareSources a air:Belief-rule ;
air:if { :SRC1 owl:sameAs :SRC2 . } ;
air:else [air:assert { :Jay s:shouldBuy :COMPANY . }] .

Fig. 6. Compute trust in data using trust in data sources: JayBuyRule uses the
trust ontology described in Figure 5.c to assign trust to data sources with respect to
buy recommendations. If there are two different data sources with trust values greater
than or equal to 7 that recommend the same stock, and if the stock is above its 200
day moving average, then the rule recommends that Jay should buy that stock.

source can be declared to be either trusted or untrusted depending on which
class it belongs to. Figure 5.b illustrates how trust values can be assigned to
sources through a trustvalue property. Figure 5.c is an example of trusting a
source with respect to certain data. For example, a hospital site may be trusted
with information about a potential virus outbreak but may not be trusted with
respect to its inflation predictions. The tpattern is a graph pattern property
and it signifies that only RDF data from the source that match the pattern
will be trusted. For example, if the content of a trusted site is as shown in
Figure 1 and the tpattern is in Figure 5.c, then only the triples that match the
tpattern, s:AmazonFootwear s:rec s:Buy. a:BestPhone s:rec s:Buy. ,
will be trusted and the triples regarding the virus outbreak and weather will be
ignored. AIR currently supports simple graph patterns to specify the kinds of
data trusted from a certain source. Similar representations are possible for rules,
for example, Figure 5.d shows a trust value associated with a AIR rule, BuyRule.

AIR rules can be written to consume these trust declarations and combine
them in different ways in order to compute trust values for data or inferences
of interest. JayBuyRule uses the trust ontology described in Figure 5.c to as-
sign trust to data sources with respect to buy recommendations. :JayBuyRule
recommends that Jay buy a stock if there are two different data sources with
trust values greater than 7 that recommend it and if the stock is above its 200
day moving average. The rule could be modified to calculate the minimum or
average trust of all sources recommending a particular stock and estimate how

@forAll :RULESET, :DATA, :RULEJUST, :COMPANY, :RULE, :TRUST.

:KarlBuyRule a air:Belief-rule ;
air:if {

<http://bigbucks.example.com/rules> log:semantics :RULESET .
((:RULESET) (:DATA)) air:justifies :RULEJUST .
:RULEJUST log:includes {

@forSome :RULEAPPEVENT .
:Karl s:shouldBuy :COMPANY .
:RULEAPPEVENT pmlj:outputdata { :Karl s:shouldBuy :COMPANY . } .
:RULEAPPEVENT air:rule :RULE .

} .
:RULE t:trust :TRUST .
:TRUST math:notLessThan 7 .

} ;
air:then [air:assert { :Karl s:shouldBuy :COMPANY . }] .

Fig. 7. Compute trust in data using trust in rules: KarlBuyRule uses the trust
ontology described in Figure 5.d to assign trust to the rules used by Big Bucks to
generate buy recommendations. If the rule used to generate a buy recommendation
has a trust value greater than or equal to 7, then the rule recommends that Karl
should buy that stock.

trusted the recommendation to buy the stock is. Probabilities associated with
data sources could also be handled similarly.

AIR rules can also reuse and execute other AIR rules. As rules themselves
could have trust values associated with them, as in Figure 5.d, it is possible to
reason about the trustworthiness of rules and deduce trust of inferences made
by them. AIR’s support for the air:justifies property allows for the execution
of other rules which we may be able to query for trust. The rule :KarlBuyRule
in Figure 7 encapsulates such a rule and recommends that Karl buy a stock only
if the rule that is used to justify the recommendation is trusted by Karl with a
trust value greater than or equal to 7.

In :KarlBuyRule, air:justifies is used to run the rules at the URL
<http://bigbucks.example.com/rules> (as extracted with log:semantics)
against some trusted data. The result of this reasoning is stored in the out-
put variable :RULEJUST, which may be used with other built-in functions, like
log:includes, to determine not only which facts are asserted by the rules, but
also the justifications for such. These justifications may then be used to deter-
mine the rules which caused some conclusion to be found to be true and their
trust values.

6 Summary and Future Work

In this paper, we discussed how AIR, a Semantic Web-based rule language, could
be used to model and reason over trust of data sources, rules and inferences. We
discussed several ways of modeling trust including binary trust, simple trust
values and qualified trust for both data sources and rules and showed how these
trust values could be used and combined by rules for trust management. Though
this work demonstrates the usefulness of AIR, it relies on user-generated rules

for handling trust. As part of our future work, we will work on general rules that
will handle trust transparently such that users do not need to explicitly know
about or handle trust in their systems but will be able to customize these rules
to do it for them. These rules will also take other factors into consideration while
computing trust, such as the maintainer of the data, the last date it was updated,
and frequency of updates, which could either be meta-data associated with the
data itself or available from public annotation services such as Annotea [19].

References

1. OWL 2 Web Ontology Language, W3C Recommendation 27 October 2009. http:
//www.w3.org/TR/owl2-overview/, 2009.

2. S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F.
Patel-Schneider, and L. A. Stein. OWL Web Ontology Language Reference, W3C
Recommendation 10 February 2004. http://www.w3.org/TR/owl-ref/, 2004.

3. T. Berners-Lee. Primer: Getting into RDF and Semantic Web using N3.
http://www.w3.org/2000/10/swap/Primer, 2005.

4. C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so far. International
Journal on Semantic Web and Information Systems (IJSWIS), 2009.

5. M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The KeyNote Trust
Management System Version. Internet RFC 2704, September 1999., 1999.

6. D. Brickley and R. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema, W3C Recommendation. http://www.w3.org/TR/rdf-schema, February
2002.

7. Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and M. Strauss. REFEREE:
Trust management for Web Applications. Computer Networks and ISDN Systems,
29(8–13):953–964, 1997.

8. J. Doyle. A truth maintenance system. Artificial Intelligence, 12(3):231–272,
November 1979.

9. K. D. Forbus and J. de Kleer. Building problem solvers. MIT Press, Cambridge,
MA, USA, 1993.

10. Y. Gil and V. Ratnakar. Trusting information sources one citizen at a time. In
Proceedings of the First International Semantic Web Conference on The Semantic
Web, pages 162–176, London, UK, 2002. Springer-Verlag.

11. J. Golbeck, B. Parsia, and J. Hendler. Trust networks on the semantic web. In In
Proceedings of Cooperative Intelligent Agents, pages 238–249, 2003.

12. L. Kagal, C. Hanson, and D. Weitzner. Using dependency tracking to provide
explanations for policy management. In IEEE Policy 2008, 2008.

13. L. Kagal, I. Jacobi, and A. Khandelwal. Gasping for air: Why we need linked
rules and justifications on the semantic web. In Under review at the International
Semantic Web Conference (ISWC), 2010.

14. U. Kuter and J. Golbeck. Sunny: a new algorithm for trust inference in social
networks using probabilistic confidence models. In AAAI’07: Proceedings of the
22nd national conference on Artificial intelligence, pages 1377–1382. AAAI Press,
2007.

15. N. Li, B. N. Grosof, and J. Feigenbaum. Delegation Logic: A Logic-based Approach
to Distributed Authorization. ACM Transactions on Information Systems Security
(TISSEC), 6, No. 1, Feb 2003.

16. M.Blaze, J.Feigenbaum, and J.Lacy. Decentralized trust management. Proceedings
of IEEE Conference on Privacy and Security, 1996.

17. E. Prud’hommeaux and A. Seaborne. Sparql query language for rdf w3c recom-
mendation. http://www.w3.org/TR/rdf-sparql-query, January 2008.

18. M. Richardson, R. Agrawal, and P. Domingos. Trust management for the semantic
web. In Proceedings of the 2nd International Semantic Web Conference, pages 351–
368. Springer Berlin / Heidelberg, 2003.

19. W3C. Annotea project. http://www.w3.org/2001/Annotea/.

A APPENDIX: Namespaces

In this paper, we refer to the namespaces defined in Figure 8.

@prefix air: <http://dig.csail.mit.edu/2009/AIR/air#>.
@prefix airj: <http://dig.csail.mit.edu/2009/AIR/airjustification#>.
@prefix log: <http://www.w3.org/2000/10/swap/log#>.
@prefix math: <http://www.w3.org/2000/10/swap/math#>.
@prefix sparql: <http://www.w3.org/2000/10/swap/sparqlCwm#>.

@prefix pmlj: <http://inference-web.org/2.0/pml-justification.owl#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix t: <http://bigbucks.example.com/trust#>.
@prefix s: <http://bigbucks.example.com/stocks#>.
@prefix : <http://bigbucks.example.com/buyPolicy#>.

Fig. 8. Namespaces Used

