
QueryMed: An Intuitive SPARQL Query Builder for
Biomedical RDF Data

Oshani Seneviratne
Massachusetts Institute of Technology

Cambridge, MA
USA

oshani@csail.mit.edu

Rachel Sealfon
Massachusetts Institute of Technology

Cambridge, MA
USA

rsealfon@csail.mit.edu

ABSTRACT
We have developed an open-source SPARQL query builder
and result set visualizer for biomedical data, QueryMed,
that allows end users to easily construct and run transla-
tional medicine queries across multiple data sources.

QueryMed is flexible enough to allow queries relevant to a
wide range of biomedical topics, and can run queries across
multiple SPARQL endpoints. It is designed to be accessible
to users who are not familiar with the structure of the un-
derlying ontologies used in describing the datasets or with
the SPARQL query language used to query the data. The
system allows users to select the data sources that they wish
to use, drawing on their specialized domain knowledge to de-
cide the most appropriate data sources to query. Users can
add additional data sources if they are interested in querying
endpoints that are not in the default list. After retrieval of
the initial result set, query results can be filtered to improve
their relevance. The system also allows the user to exploit
the underlying structure of the RDF data to improve query
results.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Computer Applications;
H.3.3 [Information Search and Retrieval]: Information
Systems

Keywords
Biomedical Ontologies, SPARQL Query Building, Query Fed-
eration, Semantic Web, User Interfaces

1. INTRODUCTION
The quantity of publicly available data in the biomed-

ical domain has dramatically increased over recent years.
Publicly available biomedical resources include data on drug
discovery [22, 15], clinical trials, diseases, disease genes, and
phenotypes. With the linked open data movement, the se-
mantic web community has been very proactive in convert-
ing these rich information resources to RDF [8]. In fact, the
biomedical domain is among the early successes of the se-
mantic web, due to the rapidity with which the community
has made its data available in RDF triple stores [24].

To allow end users to exploit the abundance of biomedi-
cal data that is currently available in RDF, there is a need

Copyright is held by the author/owner(s).
WWW2010, April 26-30, 2010, Raleigh, North Carolina.
.

for easy-to use systems that do not require the end user to
have knowledge of the underlying structure of the data, and
that also allow users to run federated queries on multiple
SPARQL endpoints. There is also a need for efficient hybrid
interfaces that allow both browsing and querying data [17].
Many currently available systems are linked data browsers
such as the Tabulator [23] which permit users to navigate
the data in an exploratory manner, but lack support for
filtering and querying the data in a user friendly manner.

Answering many medically and biologically relevant ques-
tions requires searching, filtering, and combining informa-
tion from multiple data sources. For example, a physician
may know her patient’s personal information, symptoms,
current medications, and genotype. She may wish to de-
termine the patient’s treatment plan and identify clinical
trials for which the patient is eligible. Although the physi-
cian has a single question–“based on the information I have
about this patient, what is the best treatment plan and set
of clinical trials available?”–there is no single data source
that the physician can use to answer this question. The in-
formation that the physician needs must be gathered from
numerous data sources such as Pubmed, DailyMed, Drug-
bank, LinkedCT, Diseasome, and Gene Ontology [6, 1, 3, 5,
2, 4]. Her question must be broken up into discrete pieces
that can be executed individually at one data source at a
time.

Since the physician must search many data sources in or-
der to find an answer to her single question, she requires
a system that can automatically run queries over multi-
ple SPARQL endpoints. Also, the physician may not know
SPARQL query syntax, the location of the SPARQL end-
points, or the structure of the relevant ontologies. She is
likely to want an intuitive way to query and to display the
query results. Developing intuitive ways to query multiple
SPARQL endpoints and to display results is both an impor-
tant and a challenging problem. Our system, QueryMed,
allows users with no knowledge of the SPARQL query lan-
guage or the structure of the underlying ontologies to easily
run queries across multiple SPARQL endpoints.

This paper is organized as follows: Section 2 provides
background information on the semantic web and its rel-
evance for modeling data in the biomedical domain. Section
3 describes our system. Section 4 discusses related work
and illustrates how QueryMed differs from previous systems.
Section 5 outlines future work. Finally, section 6 summa-
rizes the contributions of our system.



Figure 1: QueryMed Architecture Overview

2. BACKGROUND
The semantic web can be viewed as a global database sys-

tem for the information available on the world wide web.
Semantic web data is modeled by structured languages such
as RDF and OWL, and can be queried using the SPARQL
query language. The addition of structure to web data
allows inferences to be automatically drawn by intelligent
agents integrating data from multiple sources [11].

Many major biological and biomedical data resources, in-
cluding Gene Ontology, DailyMed, LinkedCT, and Disea-
some, are currently available as RDF triplestores. Almost all
of these data sources are interlinked. Integrating biomedical
data across multiple data sources and automatically extract-
ing specific knowledge from web resources are crucial tasks
for physicians and biologists. These semantic web resources
represent valuable repositories of information that can be
automatically mined for applications that require biological
knowledge.

Although many valuable resources in the biomedical do-
main are available in RDF, there are a number of challenges
that must be addressed in order to make such resources
accessible to physicians, patients, and life scientists. One
challenge is constructing systems that allow end users to
run intuitive queries on biomedical data. Users of biomedi-
cal resources are likely to have extensive domain knowledge,
but be unfamiliar with query language syntax and with the
structure of biomedical ontologies. Almost all the SPARQL
endpoints available today offer generic query interfaces that
require users to manually write their queries. This can be a
daunting task especially for someone who is new to seman-
tic web technologies. Therefore, it is important to design
user-friendly systems that allow users to take advantage of
the wealth of structured biomedical knowledge available on
the semantic web. Another central challenge is designing
systems that permit users to query multiple data sources

Figure 2: QueryMed Architecture Details

simultaneously, since relevant biomedical data are often dis-
tributed among many sources [19].

3. DESIGN & IMPLEMENTATION
The QueryMed system allows the user to easily query mul-

tiple biomedical data sources. Queries can be run against a
default list of SPARQL endpoints, or against a set of user-
selected endpoints. The end user can easily input additional
endpoints in order to utilize resources that are not included
in the default list. The system automatically translates the
user input into a SPARQL query for each individual end-
point, executes the query, combines the results, and returns
them to the user. The user can choose to refine the query
by iteratively modifying the original query terms, and by
filtering the result set. The advanced query functionality
of the QueryMed system allows the user to easily construct
complex logical SPARQL queries that take advantage of the
underlying structure of the ontologies. The simple user in-
terface of the QueryMed system is designed to be intuitive
for users with no knowledge of the SPARQL query language.

In the following sections we explain the system function-
ality by first giving an overview of the QueryMed system
architecture and the design decisions behind crucial compo-
nents of the system.

3.1 QueryMed Overview
A general overview of QueryMed architecture is shown

in Figure 1. The main components of the system are the
user interface and the proxy server. After a user submits
a query from the user interface, the query is translated by
the proxy server into individual SPARQL queries for each
remote endpoint. The query results are returned from the
remote endpoints, combined by the proxy server, and pre-



Figure 3: Initial Basic Query Interface

sented to the user. Figure 2 presents a detailed illustration
of the parts of the QueryMed system.

3.1.1 User Interface
The QueryMed user interface is designed to be intuitive

for the end user, yet flexible enough to permit a broad range
of interesting queries. The basic query interface allows the
user to run simple queries, and is designed for maximal ease
of use. The advanced search capabilities enable the user
to easily construct complex logical queries that take advan-
tage of the underlying structure of the biomedical ontologies.
The user interface also allows the user to iteratively refine
queries, and displays the query results, which have been re-
trieved from multiple SPARQL endpoints.

The main components of the user interface are as follows:

• Basic Query Interface: In order to make QueryMed
easy to use, but also provide a flexible system that
is capable of performing a broad variety of biomedi-
cally relevant queries, we provide an uncluttered basic
search interface as shown in Figure 3. The “Query All”
button performs a keyword-based query over the de-
fault set of data sources. The advanced search option
“Refine Query” allows the user to access the Advanced
Query Interface.

For example, a physician interested in finding semantic
web resources related to coronary artery disease could
use “coronary artery disease” as a search keyword in
the input search box and select the “Query All” op-
tion. This query searches all default data sources for
resources related to coronary artery disease by execut-
ing a SPARQL query that performs a regular expres-
sion filter on the property values. The simplicity of the
basic query interface allows the physician to rapidly
and easily browse semantic web resources of interest.

• Result Browser: The user can view her query results
organized by source in the Result Browser. The user
can choose the number of results viewed at a time,
search the columns based on some text value and also

Figure 4: Sample Result Table

sort the columns as shown in Figure 4. This allows the
user to perform additional filtering on the query results
to display the most relevant results. This feature is
particularly useful for refining queries that return a
large number of results.

For example, after searching for “coronary artery dis-
ease” in the basic query interface, the physician will
see displayed in the Result Browser a list of disease
names in the Diseasome database and drugs in Daily-
Med and Drugbank that relate to coronary artery dis-
ease. She can then filter the results using additional
search terms. For example, she knows that the route
of administration of the drug that she is interested in
is injection, so she filters the drug query results on
the route of administration field using the query term
“injection.” The additional filtering capabilities of the
Result Browser allow her either to browse a large num-
ber of query results, or refine her search to view only
the most relevant results.

• Advanced Query Interface: The Advanced Query
Interface allows the user to add new data sources, and
to construct a complex SPARQL query that takes ad-
vantage of the structure of the underlying biomedical
ontologies. Thus, the end user can construct a targeted
query without previous knowledge of the SPARQL lan-
guage or the structure of the relevant ontologies.

This interface is displayed when the “Refine Query”
in the Basic Query Interface is invoked. the user is
provided with the default list of data sources as shown
in Figure 5. The user may select from this list relevant
data sources that they wish to query. The user can also
dynamically add additional data sources as shown in
Figure 6, allowing her to query endpoints of interest
that are not included in the default list.



Figure 5: The user has the option of selecting spe-
cific trusted or relevant data sources, or of adding
additional data sources to query.

Figure 6: The user can dynamically add additional
SPARQL endpoints.

For example, a physician who is interested in using the
QueryMed system to find relevant clinical trials for her
patient can use the Advanced Query Interface to add
additional relevant datasources. She might want to use
the clinical trial database LinkedCT, which is not in
the default set of endpoints. So, she selects the Refine
Query option to select the endpoints to search, and
then the Add option to include an additional endpoint.
After entering the name and URL of the LinkedCT
endpoint, she can able to search for clinical trials for
which her patient may be eligible.

When a data source is selected, the properties list is
automatically populated with all distinct properties
available at the selected endpoint. The user can spec-
ify values for relevant properties to restrict the search
space. Once the properties are returned, they will be
displayed in the user interface as shown in Figure 7.
Properties displayed in this interface can be deferenced
to find what they mean by clicking on each of the in-
dividual property links. This allows the user to under-
stand the properties, and thereby input the keywords
that will be most useful to query on each specific prop-
erty.

By using the interface shown in Figure 7, the user can
choose to perform exact queries, or filter results on
specific keywords. If the user does not know the spe-
cific value for a property, she can specify a keywords
using the FILTER option. She also can choose logical
operators to connect the various parts of her query.
When AND is used it will be appended as a basic
triple pattern to the SPARQL query, i.e. as a conjunc-
tion. When OR is used, the specified graph pattern is
made to disjunct with the rest of the query with the
SPARQL UNION operator. If no logical operator is

Figure 7: The advanced search feature allows the
user to perform exact or pattern-matching queries
connected by user-specified logical operators over
specific properties in given resources, taking advan-
tage of the structure in the RDF data.

specified, AND will be used by default. The advanced
query feature is capable of dynamically constructing
complex SPARQL queries, such as the query shown in
Figure 8.

For example, the physician might want to further re-
fine her search for cardiovascular diseases. She searches
Diseasome for diseases whose class is “Cardiovascu-
lar” or for which the associated gene is ABCA1. Using
the QueryMed advanced search interface, the complex
SPARQL query corresponding to her question is auto-
matically constructed as shown in Figure 8, and she
can view the query results conveniently displayed in
the Results Browser.

SELECT distinct ?disease WHERE {

{?x <http://www.w3.org/2000/01/rdf-schema#label>

?disease

FILTER regex(?disease,

"coronary artery disease", "i").

?x <http://www4.wiwiss.fu-berlin.de/diseasome/

resource/diseasome/class>

<http://www4.wiwiss.fu-berlin.de/diseasome/

resource/diseaseClass/Cardiovascular>}

UNION { ?x <http://www4.wiwiss.fu-berlin.de/

diseasome/resource/diseasome/associatedGene>

<http://www4.wiwiss.fu-berlin.de/diseasome/

resource/genes/ABCA1>.}

}

Figure 8: A complex SPARQL query that was dy-
namically constructed using the advanced query fea-
ture of the QueryMed system.



• Dynamic Facet Creator/Filter: The Dynamic Facet
Creator/Filter allows the user to select a set of data
sources, load the properties available at these sources,
and dynamically construct a complex SPARQL query
connected by logical operators to take advantage of the
structure of the data at each endpoint (Figure 9). The
interface allows displaying of many property lists from
different sources simultaneously (grouped by source).
Therefore, only information relevant to the endpoint
the user is currently examining will be visible at any
given time.

Figure 9: Dynamic Facet Creator and Filter

3.1.2 Proxy Server
The proxy server acts as an intermediary between the user

interface and the remote SPARQL endpoints. Its function-
ality is twofold:

1. Execute the SPARQL queries at the relevant remote
SPARQL endpoints and consolidate the results to be
presented in the user interface.

2. Cache the results of the current query so that refine-
ments of the query will have reduced network and
query execution latency.

The specific components in the Proxy Server are as fol-
lows.

• Source Manager: The Source Manager reads the
source list and populates the default query list on the
user interface. It also manages the default endpoints,
the currently selected endpoints, and the endpoints
that have been dynamically added.

• Translator: The Translator is responsible for trans-
lating the user query into valid SPARQL syntax. The
Translator obtains the parameters to construct the
query from the input the user specifies in the Query In-
terface, and dynamically constructs a SPARQL query
based on the user input based on some templates in
built to the system. The Translator relies on two ser-
vices:

1. Run Query: The purpose of this service is to
execute SPARQL queries generated by the Trans-
lator, and return the query results as a JSON ob-
ject.

SELECT ?projection_1 ?projection_2 ...

?projection_n

WHERE {?x source:property ? projection

FILTER regex(? projection, ’" +

input +"’, ’i)

}

... //Other property filers are to follow

Figure 10: The structure of the SPARQL query con-
structed when the user selects “Query All”.

2. Advanced Queries: This service takes as in-
put list of sources, properties, query terms, and
logical operators, which are passed to the proxy
server as a JSON object.

3.2 Design Decisions

3.2.1 Source list
Because the set of default endpoints is stored on the proxy

server, the set of resources available by default to the user
can easily be updated. Since useful biomedical resources are
rapidly being developed and made available as RDF triple
stores, the ease of updating the resource list ensures that
the system can easily be brought up to date.1

3.2.2 Proxy Server
While an entirely client side application is possible, we

chose to have a proxy server perform the SPARQL query
execution and caching. This design is advantageous for sev-
eral reasons:

1. Efficient cache management: The result set from run-
ning an unrestricted query can include millions of re-
sults. It may be infeasible to keep unfiltered query
results in browser memory. A typical memory foot-
print for a browser (for e.g. Firefox) is usually between
20MB and 100MB. A poorly constructed query can re-
sult in gigabytes worth of triples returned, causing the
browser to crash. The proxy server can cache results
from initial query execution, so that only a filtered
result set is subsequently returned to the client.

2. The proxy server, and not the Javascript client, exe-
cutes SPARQL queries at the remote endpoints. This
avoids cross domain XML-HTTP-Request errors in ac-
cessing web servers at various domains that are used
to host the remote biomedical SPARQL endpoints.

3.2.3 Data Structures
The parameters required for constructing the SPARQL

queries are sent from the user interface to the proxy server.
In the general “Query All” case, the system will take the
user-specified query term as text-box input, filter on all
the triples available at the SPARQL endpoint to select only
those that contain the keyword, and display the results. The
generated SPARQL query will be of the form illustrated in

1As a corollary, the QueryMed system could easily be
adapted to perform queries outside the biomedical domain
by modifying the list of input data sources.



Figure 10. The word “input” in the figure represents the
keyword specified by the user.

When the results are returned, each result set is structured
as a JSON object. This object identifies the endpoint where
the query was executed, the URI of the endpoint, the query
variables, how many results are returned and the result set.

When the user runs an advanced query, the proxy server
takes as input the data sources to be queried, the properties
to be queried, the values for each of the selected properties,
and the relationship between the property-value pairs and
the original user-specified query term. This information is
also passed to the proxy server as a JSON object.

3.2.4 Query Interface
The basic query interface is designed to be as simple as

possible, so that users who have little previous experience
running queries on SPARQL endpoints can easily and rapidly
find query results. The advanced query functionality of our
system allows users the flexibility to intuitively construct
complex SPARQL queries.

3.2.5 Implementation
QueryMed is implemented in Java in the backend and

JavaScript, HTML and CSS in the frontend. In the backend,
the Jena library [18] is used to run the SPARQL queries
and 4-store [14] is used as a triple store to provide caching
support. The JQuery library [21] was used to develop an
attractive user interface.

3.3 Performance
We observed that the slowest step in running queries using

the QueryMed system is populating the property values for
each selected endpoint. We compared the times required to
load properties from several endpoints, by running the query
illustrated in Figure 11. Timing data are shown in Table 1.

For all selected endpoints, without local data (i.e. no
cache on the proxy server), the property values took longer
to load. The difference in running time between with local
data and without local data is approximately three orders of
magnitude. The network latency and the slow performance
of the remote SPARQL endpoints as compared to the lo-
cal data cache explains the increase in running time for the
queries in the two cases. We also noted that the running
time of the subsequent iterations of the same query is sig-
nificantly less than the initial query, probably due to browser
caching. When comparing query execution times across the
data sources, we see that the Drugbank takes the longest,
probably due to the greater size of the Drugbank dataset as
compared to the other three datasets.2

By managing our own cache to contain the data most
likely to be needed on the proxy server, we were able to
decrease running time considerably. Based on the dramatic
improvement in running time obtained using caching, the
slowest step in executing queries with our system can be
eliminated. However, this requires importing data, should
the user wishes to use a data source not available in the
default list of SPARQL endpoints.

2As of February 15th 2010, Diseasome contains 91,182
triples, DailyMed contains 164,276 triples, Sider contains
192,515 triples, and DrugBank contains 765,936 triples) [2,
1, 7, 3]

SELECT DISTINCT ?property

WHERE { [] ?property [] }

ORDER BY ?property

Figure 11: SPARQL query to retrieve all proper-
ties. This was used to measure the performance of
implementing a local cache.

Figure 12: Comparison of query execution times
(ms) with and without local data caching. The data
points represent the average of three trials.

3.4 QueryMed Resources
The source code for the Querymed system is available at

the QueryMed Google Code project:
http://code.google.com/p/querymed

A video illustrating a sample use case can be found at:
http://dig.csail.mit.edu/2010/Papers/www-ws-colab-science/

videos

4. RELATED WORK
A number of existing tools aim to provide a user-friendly

interface for browsing biomedical semantic web data, or to
allow users to perform federated queries. Several of these
are described below.

The SMART query tool is a web-based application de-
signed to allow biologists to run SPARQL queries over multi-
ple endpoints. Queries to the SMART system are written in
the natural-language like Manchester OWL syntax [10]. Ma-
jor differences between the QueryMed system and SMART
include the ability to construct queries intuitively by spec-
ifying keywords for user selected properties, to iteratively
refine query results, and to dynamically add additional end-
points in the QueryMed system.

GoWeb and BioGateway are two additional systems de-
signed for answering queries on biomedical data [12, 9].
GoWeb allows users to perform a hybrid search, running
keyword-based queries and then filtering based on ontolog-
ical concepts. However, while GoWeb functions as a search
engine that incorporates ontological background knowledge
to improve search results, QueryMed is a system that uti-
lizes user input in constructing SPARQL queries. BioGate-
way provides a web interface to query a provided SPARQL
endpoint that includes graphs from several biomedical re-
sources. However, BioGateway does not allow the user to
run queries over multiple endpoints or to dynamically add
endpoints.



Dieseasome Dailymed Drugbank Sider
Without
Caching

With
Caching

Without
Caching

With
Caching

Without
Caching

With
Caching

Without
Caching

With
Caching

1st Trial 3.45 s 134 ms 1.77 s 384 ms 9.51 s 60 ms 14.64 s 23 ms
2nd Trial 1.61 s 31 ms 1.57 s 32 ms 9.34 s 31 ms 2.94 s 7 ms
3rd Trial 1.71 s 7 ms 1.66 s 11 ms 9.06 s 23 ms 2.86 s 6 ms

Table 1: Running times to retrieve all the properties from selected endpoints

Hybrid
Interface
(Combines
Querying &
Browsing)

Provides
Local
Caching

Queries
Multiple
Sources

Dynamic
Addition
of Sources

Allows
Keyword
Queries

Open
Source

GUI

QueryMed Yes Yes Yes Yes Yes Yes Yes
SMART No Yes Yes No No Yes Yes
DARQ No No Yes Yes No Yes No
GoWeb Yes No Yes No Yes No Yes
BioGateway Yes Yes Yes No No Yes Yes
Twinkle No No Yes No No Yes Yes

Table 2: Comparison of selected features of the QueryMed system with other related systems.

Twinkle offers a stand-alone graphical user interface to
load and edit SPARQL queries that can be used to query
online SPARQL endpoints [13]. Our system differs from the
Twinkle system in several aspects. First of all, in Twinkle,
the user is expected to know what is already available at the
SPARQL endpoints to write the query. But in QueryMed,
the user can provide input in the form of keywords, and has
the option to restrict the query if she wishes to run a more
precise query. Second, although Twinkle was designed to
be a more general purpose system, it only supports a small
number of specific SPARQL endpoints, while QueryMed al-
lows the user to dynamically add SPARQL endpoints.

Most SPARQL query engines are designed to run queries
against individual endpoints. But it is often useful to draw
on multiple web resources in answering a query. The DARQ
system [20] is designed to allow the user to run integrated
queries against multiple SPARQL endpoints. But to the
the best of our knowledge, it does not offer a graphical user
interface to facilitate use by biomedical domain experts who
are not familiar with SPARQL query syntax.

Table 2 compares selected features of the QueryMed sys-
tem with other related systems.

5. FUTURE WORK
Our system currently allows only a restricted set of SPARQL

queries. Supporting additional types of queries and includ-
ing query optimization functionality could increase both the
flexibility and the speed of the QueryMed system. By draw-
ing on the expressivity of the SPARQL language and the
information contained in the ontologies used to represent
the data, it would be possible to extend our system into an
intelligent reasoning system on biomedical data which al-
lows physicians to enter sophisticated, complex queries and
find relevant biomedical results.

Another approach that could reduce running time still
further, especially for users with a slow network connection,

would be to create a complementary standalone application
that gives the user the option at startup time of loading all
the required RDF data. Since data is stored locally after
the initial startup, using the system in subsequent queries
will be rapid after an initial loading phase. This approach
might be too memory-intensive if the user wishes to run
queries over many large triple stores, but might work best
in a situation where there is a small or moderate amount of
data in the repositories of interest to the user.

We also believe that it would be useful to allow exploration
of the relationships among multiple data sources containing
similar resources. One challenge in integrating biomedical
data across multiple sources is that individual data items
(i.e, a specific protein or a specific drug) may be represented
by distinct URIs at different endpoints. The diversity of rep-
resentations of identical data items across different biomed-
ical data sources makes it difficult to automatically com-
bine these items. However, there is some cross-referencing
between the biomedical data sources that we included by
default in our system. For example, DailyMed drugs some-
times refer to diseases in the Diseasome data source by their
URI. It might be useful to provide a representation of the re-
lationships among search results from different sources with
the query results. Additionally, the system could automat-
ically detect similar data items even if they are identified
by different URIs, and group similar items from distinct
data sources together in the query results by natural lan-
guage processing. Another useful feature might be to allow
the user to view the relationships among URIs (as in the
relfinder system [16] , which displays possible paths through
the RDF graph between distinct resources).

We are also working on an autocompletion feature to au-
tomatically retrieve the values for any given property. This
feature will allow the user to automatically see all valid
choices for each property, and will make the system easier
to use and reduce empty query result sets.

Since a major goal of QueryMed is ease of use by physi-



cians, life scientists, and patients, we also plan to perform
a user study to understand how effectively users without
knowledge of SPARQL can interact with our system. We
plan to use data from this study to further refine our sys-
tem to improve its usability.

6. CONCLUSION
The QueryMed system allows endpoints to be dynamically

added by the user, and provides a hybrid interface that en-
ables the user to both query and browse data. QueryMed
also allows the user both to perform keyword queries and
to construct more advanced queries taking advantage of the
structure of the data. Furthermore, the Javascript-based
user interface of the QueryMed system, implemented us-
ing the JQuery UI library, is particularly attractive, easy
to interact with, and capable of handling a variety of user
input events. We believe that developing systems such as
QueryMed, which makes SPARQL endpoints easily accessi-
ble to end users, will entice more people to expose their data
as linked open data sources.

The main contributions of our system are: dynamic con-
struction of complex SPARQL queries based on intuitive
user input; dynamic addition of user-specified endpoints;
and the ability to run queries over multiple endpoints. Be-
cause our system is flexible and easy to use, we believe it
will be of use to the biomedical community.

7. REFERENCES
[1] Dailymed, http://dailymed.nlm.nih.gov/dailymed/.

[2] Diseasome,
http://www4.wiwiss.fu-berlin.de/diseasome/.

[3] Drugbank, http://www.drugbank.ca.

[4] Gene ontology, http://www.geneontology.org.

[5] Linkedct, http://linkedct.org/sparql.

[6] Pubmed, http://pubmed.bio2rdf.org/sparql/.

[7] Sider, http://www4.wiwiss.fu-berlin.de/sider/.

[8] W3c sweo community project, linking open data.

[9] E. Antezana, W. Blondé, M. Egana, A. Rutherford,
R. Stevens, B. De Baets, V. Mironov, and M. Kuiper.
Structuring the life science resourceome for semantic
systems biology: lessons from the BioGateway
Project. PSWAT4LSBurger A, Paschke A, Romano,
et al, eds, 435, 2008.

[10] A. D. L. Battista, N. Villanueva-Rosales,
M. Palenychka, and M. Dumontier. Smart: A
web-based, ontology-driven, semantic web query
answering application. In Semantic Web Challenge,
2007.

[11] T. Berners-Lee. Relational databases on the semantic
web, design issues. 1998.

[12] H. Dietze and M. Schroeder. Goweb: a semantic
search engine for the life science web. BMC
Bioinformatics, 10 Suppl 10, 2009.

[13] L. Dodds. Twinkle: A sparql query tool,
http://www.ldodds.com/projects/twinkle/.

[14] Garlik. 4store, an efficient, scalable and stable rdf
database, http://4store.org/.

[15] C. Goble and R. Stevens. State of the nation in data
integration for bioinformatics. J. of Biomedical
Informatics, 41(5):687–693, 2008.

[16] P. Heim, S. Hellmann, J. Lehmann, S. Lohmann, and
T. Stegemann. Relfinder: Revealing relationships in
rdf knowledge bases. In T.-S. Chua, Y. Kompatsiaris,
B. Mrialdo, W. Haas, G. Thallinger, and W. Bailer,
editors, SAMT, volume 5887 of Lecture Notes in
Computer Science, pages 182–187. Springer, 2009.

[17] A. Jentzsch, B. Andersson, O. Hassanzadeh,
S. Stephens, and C. Bizer. Enabling tailored
therapeutics with linked data. In World Wide Web
Conference: Linked Data On the Web Workshop, 2009.

[18] B. McBride. Jena - a semantic web framework.

[19] C. Pasquier. Biological data integration using semantic
web technologies. Biochimie, 90:584–594, 2008.

[20] B. Quilitz and U. Leser. Querying distributed rdf data
sources with sparql. In ESWC, pages 524–538, 2008.

[21] J. Resig. Jquery –javascript library, http://jquery.com.

[22] M. Sharp, O. Bodenreider, and N. Wacholder. A
framework for characterizing drug information
sources. 2008.

[23] Tim Berners-Lee and James Hollenbach and Kanghao
Lu and Joe Presbrey and Eric Prud’ommeaux and mc
schraefel. Tabulator Redux: Browing and Writing
Linked Data . In Linked Data on the Web Workshop
at WWW08, 2008.

[24] Y. Yip. Accelerating knowledge discovery through
community data sharing and integration. Yearb. Med
Inform., 2009.


