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ABSTRACT
In the past two decades, industry-academia collaboration
has emerged as the new paradigm in pharmaceutical re-
search. The long term success of such partnerships depends
on unfettered sharing of data between researchers who op-
erate in two vastly different environments. Moreover, some
of these sources contain data that needs to be secured for a
variety of reasons: intellectual property, competitive advan-
tage, privacy implications etc. Environments that are able
to dynamically integrate data from disparate sources can
facilitate aforementioned collaborations. We are developing
a secure SPARQL federation engine that can provide such
information mash-ups, including data from secured data
sources via policy enforcement. In this paper we describe
the architecture of our system and discuss its capabilities
and contributions.

Categories and Subject Descriptors
H.4.m [Distributed Systems]: Miscellaneous; D.2 [Semantic
Web]

General Terms
Keywords
Secure SPARQL Federation, Proof based authentication,
Pharmaceutical research

INTRODUCTION
The integration of data from distributed, heterogeneous

data sources is an essential component of realizing the full
potential of the Semantic Web - a distributed model for
sharing and interpreting information. The development of
SPARQL [16], a query language for Resource Description
Framework (RDF), has made it easier than before to per-
form such data integrations. The existence of SPARQL also
means that there is an increased incentive for providers to
make content available in RDF, a more descriptive frame-
work than traditional relational formats. These advances
lead to the need for environments that can perform dynamic
integration of data from disparate SPARQL endpoints. Cur-
rently, however, there is a lack of secure systems that can
perform on-the-fly mash-ups of sensitive data, the access to
which needs to be regulated for various legal and economic
reasons.
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In this paper, we describe the architecture of a data in-
tegration engine that provides secure SPARQL federation.
The engine accepts a set of queries from a client, sends them
off to appropriate SPARQL endpoints, and returns the re-
sults to the client. It also requires clients to provide some
security credentials, which are used to satisfy the access poli-
cies of those endpoints that contain secure data. Such data
can include e.g. personally identifiable information(PII) of
individuals and trade secrets. For obvious reasons, Linked
Open Data (LOD) is not a suitable model for these types of
data.

The motivation for the engine‘s conception, which is de-
scribed in section 2, is the case of pharmacological research
for which collaborative use of data is essential. This work
builds on the research done on SPARQL orchestration for
open data sources, query rewriting, policy languages and
proof generation, which are briefly described in Section 3.
In section 4, the architecture of this system is described in
detail. In section 5, a summary is provided followed by pos-
sible ways to build on this work.

MOTIVATING SCENARIO
In the last decade, industry-academia-health provider part-

nerships have emerged as the paradigm for pharmaceuti-
cal research [5, 8, 14]. Unlike in the past, academics and
clinicians are involved in almost every stage of the research
process. In such an environment, collaboration between in-
dividuals operating in separate domains is essential to the
development of new molecules or combinations of existing
ones.

When information sharing only takes place between in-
dividuals of a particular sector, it is easy to facilitate such
sharing. In such a setting, individuals involved in the pro-
cess have common understandings and expectations for the
research processes, rules for interactions with others within
the sector, and handling of the end products. For exam-
ple, in the case of academic research, the resulting work of-
ten becomes part of the public domain through publications
and/or conferences. As a result, the academic culture is very
open and has a propensity to share information, after publi-
cation. On the other hand, pharmaceutical companies have
a strong economic incentive to protect intellectual property
and disclose research data only on a need to know basis.
Employees of such organizations are aware of the stakes and
as a result, key ideas do not flow freely. Finally, health-
care providers have legal obligations to protect the privacy
of their patients and to ensure that PII is not divulged in
the process. Such policies are often second nature to those



Figure 1: System Architecture

that work in the healthcare sector, but not to others.
It is easy to see how collaborations that involve parties

from these three sectors can easily get bogged down by the
differences in bureaucratic structures of each. However, each
player brings to the research process unique perspectives and
expertise that are invaluable to drug discovery and develop-
ment. A use case elucidates this scenario more fully.

Kurt conducts genomic research at BigPharma - a phar-
maceutical company. Kurt’s research is part of a collab-
orative effort between BigPharma and University of Pan-
dora, which is not geographically close to BigPharma’s of-
fices. Most of the research work associated with the project
was done at a lab at the university and as such the data
is stored on a server on campus. This significant work has
produced detailed smooth-muscle responses to 2 agonists in
different organs, which is stored behind a secure SPARQL
endpoint. Moreover, this research collaboration is a part of
a larger effort by BigPharma to develop new therapies for
diseases of the lungs.

For this bigger endeavor, BigPharma has established a
partnership with BigCity hospital. The purpose of this re-
lationship is to obtain the responsiveness of patients with
certain disease expressions to particular medications. Big-
Pharma believes that this information is critical to designing
novel drugs based on the newly minted organ response re-
search. BigCity hospital has stored this data in a secure
server the access to which is limited to only those health-
care providers that are directly involved in the care of the
patients. As part of the collaboration with BigPharma, how-
ever, BigCity hospital has agreed to give individuals fulfilling
a certain role at BigPharma access to the database. Any
access from employees at BigPharma, however, is subject to
certain conditions set out in the collaboration agreement be-
tween the pharmaceutical company and the hospital. This
includes, but is not limited to, removing PII from the ac-
cessed files. Employees wishing to access BigCity’s data
must sign this pre-negotiated confidentiality policy. The
policies that dictate BigPharma access are part of the ser-
vice description of BigCity’s endpoint.

Assume that Kurt is looking to identify subjects for a
study to investigate whether certain B2 agonists affect the

lungs more than the uterus, indicating they would be a bet-
ter choice for pregnant women. In this case, he needs to
query across both SPARQL endpoints and meet their se-
curity requirements. A secure federation engine that can
integrate data from these two databases would streamline
the research process and cut drug development time signif-
icantly. Figure 2 shows the different actors and their inter-
actions in our usecase.

We have conceived such a system, which is described in
the next sections. We also provide a specific example to
illustrate these concepts.

Figure 2: UseCase: Kurt of BigPharma wants to
integrate data from the secure SPARQL endpoints
of BigCity Clinic and the University of Pandora

RELATED WORK
The research on federated database systems dates back to

the 1980s [15]. Much of the work since then has focused on
relational databases. Some of this also includes work on se-
cure relational federations. HERMES (HEterogeneous Rea-
soning and MEdiator System) developed at the University



of Maryland was a platform that was developed to design
and implement such systems [4].

There has been little work done on such environments
for Semantic Web, especially secure ones, due to the rel-
ative newness of such technologies. Some work has been
done on the semantic integration of relational data using
SPARQL [18]. It involves translating SPARQL queries to
Datalog to perform all steps involved in data integration op-
timization, query rewriting, and query optimization. How-
ever, it is not capable of querying SPARQL endpoints. With-
out such queries, much information will lack expressivity and
the full potential of the Semantic Web will remain untapped.

The only known federated system that uses SPARQL to
query RDF data sources that we are aware of is the DARQ.
It is a full-fledged engine that performs query parsing, query
planning, query optimization, and query execution. It adapts
much of the research on federation of relational databases to
perform SPARQL queries on RDF sources. However, DARQ
only operates on open data sources and does not offer any
support for secure SPARQL federation [17]. As mentioned
before, secure data sources are often necessary in scientific,
business, and socio-political fields for economic and legal
reasons.

ARCHITECTURE
The architecture of the system is illustrated in Figure 1.

Its main components are the i) SSL module, which sets up
an SSL tunnel for encrypted communication; ii) the orches-
tration engine, which performs the querying and data inte-
gration; and iii) the proof generator, which generates a proof
for each secure SPARQL endpoint based on client supplied
credentials and endpoint descriptions. The data in the end-
points are in RDF, which means that query results from mul-
tiple endpoints can be easily integrated using common vari-
able bindings. The system functions as follows: A client logs
into the engine via an SSL connection. Once an SSL link is
established, the client submits one or more SPARQL queries
to the engine. The orchestration engine accepts the queries
and devises a plan to execute the queries on the various
endpoints, based on its knowledge of the endpoints’ policy
descriptions, which are cached. If the plan requires query-
ing of one or more secure endpoints, the engine prompts the
user to supply relevant credentials. These credentials, once
obtained, are forwarded to the proof generator module to
generate proofs that are satisfactory to the endpoint. The
queries and proofs, if applicable, are then forwarded to spe-
cific endpoints. Once results are received from endpoints,
the engine forwards them to the client.

We have already seen some of the benefits of this archi-
tecture in the motivating example section. It will become
clear in the following subsections, which explain the archi-
tecture in detail, how Kurt’s work is streamlined by using
this system.

SSL
Our system uses the SSL protocol to communicate with

a user that wants to query the orchestration engine. The
client contacts the engine through an SSL handshake during
which the client provides the engine a certificate with a pub-
lic key. The SSL module uses the public key to authenticate
the user. Once this process is complete, the module notifies
the client of its decision. If there was successful authentica-
tion, the client is allowed to submit SPARQL queries to the

federation engine.
In our example, first, Kurt would establish an SSL con-

nection with BigPharma’s server with a certificate, which
BigPharma had issued to Kurt out of band. The server then
authenticates Kurt based on the public key in the certificate
and uses the public key as an identifier for him.

SPARQL Orchestration
The crux of the query processing is done by the orches-

tration engine. It receives a list of SPARQL queries from a
user via the secure channel. The engine utilizes the list of
source descriptions available to it to determine which end-
points to direct the queries to. Some of the endpoints may
specify through their source descriptions the fact that they
are secure and that further user credentials are necessary
to access data contained in them. If that is the case, the
orchestration engine prompts the user for such credentials.
The engine then forwards the credentials, if the user provides
them, to the proof generation engine to generate satisfactory
proofs (a process described in the next subsection) for the
particular endpoint. The engine then forwards the queries,
along with proofs if necessary, to the endpoints. In the cur-
rent implementation, the queries are executed in the order
they were presented to the engine by the user. Once the
responses are received from the endpoints, the orchestration
engine forwards either the full results or a justification for
the lack of full results back to the client.

It is necessary to have an orchestration engine because
subqueries often share variables. Once a sub-query is exe-
cuted and variables are bound, these mappings are provided
to the subsequent subqueries. This process is iterative, it
simplifies the query process and reduces execution time.

In our example, BigCity Hospital has a dataset that re-
lates responsiveness of patients with Chronic Obstructive
Pulmonary Disease (COPD), a lung condition, to B2 ago-
nists as measured in blood CO2 levels every 30s after admin-
istration. The following is a sample of the data that exist in
its server.

B2 agonists 30s 60s 90s 120s

patientX albuterol -8% -14% -18% -17%

The Smooth Muscle lab, located at the University of Pan-
dora, has a dataset that related smooth muscle reactivity to
B2 agonists. This data would resemble this:

bronchial uterus liver

10s 20s 30s 10s 20s 30s ...

albuterol 1% 9% 18% 0% 8% 13%

levoalbuterol 3% 11% 13% 0% 2% 3%

Kurt is looking to identify subjects for a study to investi-
gate whether certain B2 agonists affected the lungs more
than the uterus, indicating that they would be a better
choice for pregnant women. In order to do this, Kurt would
send the following queries to the orchestration engine

Prefix: BC: <http://studies.bigcity.org/pulmonary/uris/>

Select ?MEDICATION

Where{ ?ADMIN BC:patient ?PATIENT ;

BC:medication ?MEDICATION .

BC:responseTest ?TEST .

?TEST BC:CO2_30s ?c30 ;

BC:CO2_60s ?c60 }



Prefix: SML: <http://www.pandora.edu/research/

genomics/smooth-muscle/>

Select ?MEDICATION

{ ?MEDICATION SML:bronchial10 ?cBRONCHIAL10 ;

SML:bronchial20 ?cBRONCHIAL20 }

As both SPARQL endpoints are secure, the orchestration
engine would then request further credentials, specifying
what was requested and which endpoint requested it. This
request would be made based on the service descriptions
of the endpoint. If Kurt wants to proceed with the query
processing, he would provide the requested credentials.

Proof Generation
Our authorization mechanism is based on Proof-carrying

Authorization (PCA) [1, 2] and our earlier work on Policy-
Aware Web (PAW) [7, 13, 9, 10]. PCA is an authorization
framework that is based on a higher-order logic (AF logic)
where clients have to generate proofs using a subset of AF
logic and the authorizing server’s task is to check if the proof
is grounded and consistent. This allows objects in the sys-
tem to have a finer-grained control of the information and
enables a smaller trusted computing base on the server. Our
work moved these ideas to the open Web using Semantic
Web technologies to express policies and proofs.

Though proof generation may be performed by the clients
themselves, by delegating it to our system, the load on the
client is reduced as are the roundtrips between clients and
secure SPARQL endpoints to obtain required credentials.
The orchestration engine processes the list of queries input
by the client one at a time. When a particular endpoint is
found to have a policy, the orchestration engine sends the
policy of the endpoint and the client’s public key to the proof
generator. If unable to generate a proof, the proof genera-
tor requests additional credentials based on the policy it is
trying to fulfill. The proof generator is a forward chained
reasoner [11] that uses client credentials and online resources
to generate a proof for how the client meets the specific pol-
icy. This proof is returned to the orchestration engine. If
the proof generator is not able to generate a required proof
based on the client’s credentials, the client is informed and
has the option to provide additional credentials.

Both SPARQL endpoints in our example are secure and
have policies defined in AIR [6], a policy language grounded
in Semantic Web technologies. BigPharma has sent BigCity
and Pandora its public key offline, so they are able to ver-
ify signed statements from BigPharma about its employees,
their roles, the projects they work on and other properties.
University of Pandora and BigPharma are collaborators and
Pandora’s policy gives access to those BigPharma employees
with role of Research Biologist or higher, where the Research
Biologist and other role terms are defined by BigPharma in
RDF. In order to get access to Pandora’s endpoint, Kurt
must be able to show that he’s in a role that is higher than
Research Biologist and requires a signed statement from Big-
Pharma to prove it. Figure 3 is a screen shot of a proof of
Kurt meeting Pandora’s policy as viewed in the justifica-
tion pane of the Tabulator [3]. BigCity Clinic has a slightly
more complicated policy. It has mapped BigPharma’s role
terms to its internal roles (using RDF and Web Ontology
Language (OWL)) and restricts access to those individuals
who have a similar role to Clinical Researcher as defined
by them. It also requires BigPharma to inform them if the
client has read and signed the confidentiality agreement be-

Figure 3: Part of proof of why Kurt meets Pan-
dora’s policy as viewed in Justification UI pane of
the Tabulator

Figure 4: Part of proof of why Kurt meets BigC-
ity’s policy as viewed in Justification UI pane of the
Tabulator

tween BigPharma and BigCity. Kurt needs to have signed
statements not only describing his role at BigPharma but
also stating whether or not he has agreed to the confiden-
tiality agreement as shown in Figure 4

PAW-enabled SPARQL Endpoint
SPARQL endpoints exist as autonomous entities that in-

teract with the secure orchestration engine via SPARQL
queries and responses. Each endpoint may, and ideally will,
have some data and corresponding descriptions that are
unique to it. An endpoint may also have its own service
descriptions that explain its access control and usage poli-
cies that suit its needs. The proof generator uses policy
descriptions to generate a proof, if necessary, of why a client
is allowed access to a particular endpoint. An endpoint may
exist as an open endpoint or one that is secure and hence
requires some proof from the orchestration engine that ver-
ifies a users identity and authorization to obtain the data.
Such secure endpoints have a built-in proof checking com-
ponent [13], which verifies the proofs. The orchestration en-
gine contacts the endpoints periodically to update its cache
of each SPARQL endpoints data and service descriptions.
These updates need not take place simultaneously.

BEYOND ACCESS CONTROL
Our current architecture focuses on providing upfront au-



thorization mechanisms while integrating data from secure
SPARQL endpoints. However, several policies such as the
ones mentioned in our motivating use case - not releasing
non-aggregate information, ensuring appropriate anonymiza-
tion, and restricting use to research - cannot be enforced a
priori. We propose the use of accountability mechanisms
as a means of ensuring appropriate use of information. We
view accountability combined with transparency and appro-
priate redress as a complementary process to strict access
control [19]. This approach requires extensive and system-
wide audit trails, the ability to express usage policies and
automated reasoning engines that interpret these policies to
determine whether the particular uses of data in the logs are
policy-compliant. Towards this end, we plan to annotate
all results of SPARQL endpoints with usage policies that
provide the client with a machine-understandable represen-
tation of what they are/are not permitted to do with the
data. The existence of such policies would ensure that indi-
viduals are not identified as a result of PII that may result
from mashing up individual datasets, which by themselves
do not contain any PII.

SUMMARY
We have presented the architecture for a first of its kind

secure SPARQL orchestration engine. It provides a secure
channel using the SSL protocol and accepts a list of queries
from the user. It then presents the queries to appropri-
ate SPARQL endpoint that have registered with it ahead
of time. This process is facilitated by the source, data and
policy descriptions, which the engine initially received dur-
ing registration and updated periodically. If an endpoint
only permits secure access, the engine provides it with a
proof, generated from the credentials, along with the query.
The enpoints policy descriptions, which the query engine
has cached, are used in generating the proof. This system
was motivated by and has major applications in the area
of pharmaceutical research. It facilitates easy access to sci-
entific data across different domains universities, private
sector research centers, and healthcare providers, while en-
suring that appropriate safeguards are in place to allow only
authorized access to data.

We are aware that the provision of multiple queries by a
client is a limitation of our system. A query optimization
algorithm is being developed, which if implemented would
permit full scale SPARQL federation. For this work, we
plan to rely on an algorithm developed as part of a project
for query rewriting on the semantic web [12]. Once such
optimization is integrated, the client would be able to submit
a single SPARQL query and get a single answer to that
query. We are setting up the design of the rest of the system
so that different optimization modules may be plugged in
depending on the tasks at hand.

We are in the final stages of finishing the implementation
of the orchestration engine. We plan to incorporate it with
the proof generator entity, which was the result of our earlier
work on Policy Aware Web.
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