
Chapter 7

Summary

7.1 Contributions

I have discussed and implemented a distributed system based on the computational

paradigm of data propagation in an attempt to provide distributed solutions to prob-

lems with high-dimensionality. Along with this system, DProp, I have constructed

several sample applications to demonstrate the distributed functionality of this sys-

tem. This architecture, which I call “distributed propagation”, achieves useful com-

putation within a weakly-connected network, making it comparable to existing dis-

tributed computing approaches that also assume such. I designed this system with

the principles of Representational State Transfer, or REST, in mind, resulting in a

system that is both robust to failure and simple enough to be easily implemented on

multiple platforms.

The development of distributed propagation has also led me to outline and imple-

ment a provenance mechanism in distributed propagator systems. This mechanism

takes advantage of the explicit modularity of propagator networks and provides for the

simple modification of existing propagator networks to add support for provenance.

My implementation of a library to support the creation of distributed propagator

networks demonstrates this by implementing fundamentally identical APIs that al-

low construction of both traditional and propagator-aware distributed propagator

networks.

57



Constraint Benefit
Idempotence (with associativity) no locking during cell initialization

no filtering for duplicate updates during resynchronization
Associativity (with idempotence) no locking during cell initialization

don’t need to save all updates for resynchronization
Commutativity removes need for global synchronization (timestamps)

removes timeliness constraint on communications
Monotonicity removes complexity caused by deletion operations

allows computation of results with partial knowledge

Table 7.1: The four constraints on the merge operation and their benefits.

I have also outlined several constraints on merge operations used in data prop-

agation that allow for meaningful distributed computation by reducing complexity.

These constraints and their corresponding benefits are outlined in Table 7.1. Finally,

I have also developed a loose guideline for how data structures may be represented in

propagator networks, either by including data structures in the cells themselves, or

by treating cell URLs as de-facto memory pointers.

7.2 Challenges and Future Work

7.2.1 Data Structures and Propagators

It is not entirely clear that the URL-based propagator data structure design that I

propose in Section 4.1 is useful for more general computation in propagator networks.

It may be difficult to merge two data structures for which only pointers are known.

If two pointers are assigned at the same time to different (shared) cells, there is no

way to determine how to merge these otherwise opaque pointers. A sensible merge

algorithm may involve looking at the contents of each pointer so as to unify cells that

may have been assigned different UUIDs.

The provenance-aware cells proposed in Section 4.2.1 are not affected by the issue

raised above. When a provenance-aware cell is created, all pointers are allocated to

appropriate subcells as well. This means that any merge operation on the subcells of

58



a provenance-aware cell should never have to merge two distinct pointer values that

are assigned to the same field; the merge operation may safely ignore the contents of

the pointer field outside of ensuring that it remains assigned.

7.2.2 Non-monotonic Propagator Networks & Garbage Col-

lection

In this thesis, I have assumed that the collection of all cells in a propagator network

is monotonically increasing. There is no explicit “deletion” or “unregistration” mech-

anism available for a distributed cell. Once a cell has been created, it may not be

deleted, nor may a host disclaim any continuing interest in it. This means that there

is no mechanism for garbage collection in a distributed propagator network, and may

result in an intractibly large propagator network as time progresses.

In practical systems implemented with distributed propagator networks, it may

be necessary to support such non-monotonic actions as deletion or unregistration of a

cell from a network. Doing so will allow for resources on a host to be allocated more

efficiently. Rather than spending the effort to resynchronize or maintain a copy of a

cell that will never be used again, a host may instead spend its resources on more

relevant computation.

A related need is for a mechanism to allow propagator networks to eventually

prune unreachable peers. This would allow networks to eventually stop spending

resources in trying to synchronize a node that no longer exists, regardless of whether

the node was to partake in a future unregistration mechanism to disclaim interest in

the cell. An implementation of garbage collection within propagator networks will

resolve both of these issues.

7.2.3 Scalability and Practicality Issues

Although I have tested distributed propagation successfully across a network, these

tests have largely been limited in scope to only two or three peers. Larger distributed

propagator networks remain untested, and it is unknown whether they will scale

59



practically; the amount of resynchronization communications may eventually flood

any network as the propagator network grows large.

Cell Discovery

Although this thesis has considered cell discovery to be orthogonal to the problem of

distributing propagator networks, a truly scalable distributed propagator network will

need to be able to determine what cells exist and where they may be connected. A

number of mechanisms may be used to resolve this issue, including a priori knowledge

passed to the API as supposed here. Other mechanisms may include name server

mechanisms like DNS [20, 21] or service-discovery mechanisms such as DNS-SD [9]

or SSDP (part of the universal plug-and-play architecture (UPNP) [36, 37]).

Compound Propagators in Distributed Propagator Networks

As cells must be assigned an identity prior to allowing remote connections or attach-

ing propagators to them, there is no mechanism to create a cell on a remote host

and spawn a given propagator attached to it. This makes it difficult to permit any

negotiation or delegation of tasks in a distributed application. This also prevents the

creation of compound propagators in distributed propagator networks. Although we

may instantiate local propagators when a cell receives data, we may not task remote

hosts with a given propagator and cell dynamically.

Possible solutions to enable the creation of dynamic propagator networks might

include treating propagators as first-class objects that may be stored in a cell. We

might then be able to distribute propagator and cell descriptions to remote nodes

so that they may be instantiated for further processing. Allowing arbitrary code

execution does raise security concerns, however, so any mechanism for compound

propagation within distributed propagator networks will need to be carefully crafted

to eliminate issues that arise due to such.

60



7.2.4 Security

I have outlined several approaches to security in Sections 5.2 and 5.3, however, my

implementation, DProp and its accompanying library, currently does not implement

them. As such, the security implementations proposed in this paper must be more

carefully studied to ensure that data remains secure and that effective access control

is possible in this system. Improved encryption may be had by moving away from

an HTTPS implementation should SSL renegotiation prove to be unworkable, for

example.

7.3 Conclusion

Distributed propagation provides a useful alternate mechanism to distributed com-

putation that does not rely on simply distributing the data across the system for

identical processing. This will provide for a larger number of computations that may

be distributed, and perhaps allow for a greater number of applications for distributed

computing. As the power of individual computers begins to reach a plateau without

making use of concurrent processing, it will become ever more important to construct

systems to make use of a larger number of hosts and processors and to move away

from sequential processing.

61


