
Behavioural Control

David W Chadwick
University of Kent

School of Computing
Canterbury, UK

+44 122782 3221

d.w.chadwick@kent.ac.uk

Christopher Bailey
University of Kent

School of Computing
Canterbury, UK

+44 122782 3628

c.bailey@kent.ac.uk

Rogério de Lemos
University of Kent

School of Computing
Canterbury, UK

+44 122782 3628

r.delemos@kent.ac.uk

ABSTRACT

We describe the self-adaptive authorization framework (SAAF),
an autonomic self-adapting system for federated RBAC/ABAC
authorization infrastructures. SAAF monitors the behaviour of
users, and when it detects abnormal behaviour, it responds by
adapting the authorization infrastructure to prevent any further
abnormal behaviour. The models and components of SAAF are
described, as well as the current limitations and where future
research is still needed.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Access controls;

General Terms

Management, Security.

Keywords

Self-adaptation, authorization, autonomic access control,
computing security, RBAC, ABAC, behavioural control.

1. INTRODUCTION
Usage control seeks to control the use of a particular resource
after its initial access, so that future accesses are also controlled
[1]. In this respect it is similar to digital rights management [2].
In this position paper we take a broader look at controlling the use
of resources, through analysing users’ behaviour. By monitoring
all accesses to all resources, we can determine when a series of
accesses, by one or more users, becomes outside the expected
norms of behaviour. Our system then stops this abnormal
behaviour by automatically adapting the access control system so
that further abnormal or abusive behaviour is prevented. Our
system is thus an example of an autonomic access control system,
which is self-monitoring, self-adapting, and self-correcting.

1.1 Motivation
Our work is in part motivated by the case of Private Bradley
Manning. During July 2010 it is alleged that Private Manning, a

US army intelligence analyst, downloaded over 0.25 million
classified US military documents from a US Department of
Defence website [3]. Assuming that the US intelligence analyst
was an authorized user and that access was requested and granted
on a document-by-document basis, we can say that the analyst had
appropriate access rights and that the authorization system
performed its function correctly. Any monitoring of the
authorization system on a request by request basis would not pick
up any abnormal behaviour as it processed the analyst’s access
requests according to its access control policies. Usage control
would similarly not have detected any usage problems on any
single file, assuming an analyst was allowed to copy an accessed
file onto a memory stick for further study and later analysis. Even
if usage control had detected a usage problem, such as copying to
a memory stick, and had forbidden it, no further action would
have been taken even after the multiple occurrences of such
events. However to a human administrator, monitoring the system
use in real time, numerous similar requests from the same user to
access different files in a short period of time would have flagged
up inappropriate behaviour.

Unfortunately the cost of performing real time human monitoring
is prohibitively expensive in most cases. Furthermore, making
rapid changes to the system to stop further abuses is much more
problematical for a human administrator. Analysing the
misbehaviour, determining the course of corrective action to take,
and then activating the chosen actions, might have taken a human
administrator a significant amount of time, compared to the speed
that a computer can do this. Consequently our research proposes
to build an autonomic self-adaptive access control system that can
automatically detect abnormal access control behaviour and apply
corrective actions to the authorisation infrastructure. We call our
system SAAF – A Self-Adaptive Authorization Framework – for
policy based authorization systems. Note that SAAF is designed
to be able to both restrict and enable user access, when abnormal
behaviour is detected. An example of enabling user access, would
be when a doctor has break the glass access rights to any patients’
records, and indicates on breaking the glass for a patient’s record
that he now has a therapeutic relationship with that patient. SAAF
would update the patient’s record to record the new relationship,
so that break the glass would no longer be needed.

This paper is an update of our SAAF, which was originally
described here [4].

The rest of this position paper is structured as follows. Section 2
describes our models: that of the underlying federated
RBAC/ABAC authorisation system, and that of the self-adaptive
authorization framework that manages this. Section 3 concludes
with a discussion of the current limitations and the research that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

 Figure 1. The Federated RBAC/ABAC Model.

still needs to be done in order to build a fully functioning
prototype SAAF.

2. MODELS

2.1 Federated RBAC/ABAC Model
Figure 1 shows our model of a federated RBAC/ABAC system
that we wish to autonomically control. In this model, we only
show the objects that are relevant to of our autonomic access
control system. We do not show users, since the system does not
actually directly control them. Instead, it controls the access of
users to resources, via the following system components:

- the Attribute Authorities that assign role/attribute
credentials to users,

- the Credential Validation Service that validates user
credentials,

- the resource attributes (metadata) that hold user
information, and

- the Policy Decision Point which grants or denies users
access to resources.

In a federated system, attribute authorities (AA) in different
domains hold sets of user attributes in their locally managed
databases. When a user wishes to access a federated resource from
his web browser, the resource owner or service provider (SP)
typically redirects the user’s browser to the AA, which
authenticates the user then assigns the user a digitally signed
attribute assertion (or credential) according to its local Credential

Issuing Policy. In Shibboleth [5], for example, this policy
comprises the attribute release policies of both the user and the
AA.

In a federated system that is capable of attribute aggregation the
user may obtain several credentials from different AAs before
attempting to gain access to the SP’s resources, or the SP may
pull credentials from various AAs during the process of granting
access. Note that figure 1 does not show the actual protocol
messages or web message flows, but only the logical flow of
objects that are to be controlled by the autonomic system.

The user’s browser presents his/her credentials to the SP’s Policy
Enforcement Point (PEP) in order to gain access to the SP’s
resources. The PEP validates these credentials by passing a
credential validation request to its locally trusted Credential
Validation Service (CVS), and receiving a set of valid attributes
in return. The CVS is controlled by the SP’s Credential
Validation Policy that provides the rules for determining which
AAs are trusted to assign which attributes to which users. This is
the process of validating the user-role assignments from the
traditional RBAC model.

The PEP fetches the attributes of the requested resource, and
passes these, along with the user’s valid attributes, to the Policy
Decision Point (PDP) via an access request. The PDP grants or
denies the user access to the requested resources according to its
access control policy. This is the process of validating the role-
permission assignments from the traditional RBAC model. The
PDP returns its access control decision to the PEP, which then
acts accordingly.

Figure 2. SAAF Components

The three policies, resource attributes, user attributes and user
credentials of the RBAC/ABAC system are the six assets that our
self-adaptive access control framework (SAAF) will automatically
control.

We assume that the SP/PEP records in some locally secure audit
log both its requests to the CVS and PDP and their responses.
These log records will be used by SAAF to monitor the behaviour
of the federated RBAC/ABAC system.

2.2 Self Adaptive Authorisation Framework

(SAAF)
Figure 2 shows the components of our proposed self-adaptive
authorisation framework. A federated RBAC/ABAC infrastructure
that conforms to the federated RBAC/ABAC model presented
above, becomes a single component of SAAF. It produces audit
logs and is controlled by its policies as described above. SAAF
monitors the behaviour of the users of the federated RBAC/ABAC
system by inspecting its logs. When SAAF detects abnormal user
behaviour it will attempt to alter this by enacting one or more
solutions, which will modify the assets of the RBAC/ABAC
system, as described below.

The Modeller contains a model of the assets of the actual
RBAC/ABAC system that is being autonomically controlled,
modelling the 6 assets shown in Figure 1. If the actual system
does not have an asset from the federated RBAC/ABAC model,
e.g. no credential validation policy, then this will be reflected in
SAAF’s asset model. Whilst different

RBAC/ABAC systems will use different policy languages to
construct their policies e.g. XACML [8], PERMIS [9], the
Modeller uses an abstract representation of these, using model

transformations based upon an OWL ontology that we developed
in a previous project when writing natural language access control
policies (which are themselves policy language independent) [7].
Each of the policies needs to be reproduced in SAAF’s model, so
that SAAF’s asset model reflects the actual RBAC/ABAC system
being controlled. As changes are made to the underlying policies,
SAAF’s view of the RBAC/ABAC policies is kept synchronised
with them (by the Executor). We do not expect to duplicate each
of the AA’s user/attribute databases in SAAF’s model. Instead
SAAF will be initialised with as much information as each AA is
willing to release, which in the worst case could be nothing. As
each user tries to access one of the SP’s resources, the Monitor
will detect this from the audit logs and notify the Analyser. If the
Analyser notices that this user/role/attribute/credential is not in
SAAF’ user database it can add it, so that the user database will
grow with time to reflect the AAs’ databases. Similarly SAAF can
be provided with a model of the SP’s resource attribute database,
or it can build it itself from the audit logs.

The Monitor component of SAAF is responsible for monitoring
the usage of the RBAC/ABAC infrastructure, by reading in the
audit logs, in their proprietary format, and extracting from them
the events which are of interest to the SAAF Analyser, such as
role X accessed resource Y at time t. Depending on the
infrastructure of the federated environment, SAAF may use
multiple Monitors to gain the information it needs. Each Monitor
will be specific to its target application. These events are passed to
the SAAF Analyser.

The Analyser keeps a usage statistics database that records the
frequency of the various events that are passed to it. One event
may produce several sets of statistics, such as the number of
accesses a particular role or user has performed in the last
minute/hour/day, the frequency a resource has been accessed, the

Federated RBAC/ABAC Infrastructure

Monitor

Audit

logs

Analyzer

Modeller
Usage

Statistics

Behavioural

Policy

Solutions

Planner

Executor

Modify

Policies

Modify

Attributes/

Credentials

RBAC/ABAC

Policies

Update

Model

Users’

Attributes

Credentials

Abnormal behaviour

Solutions

Policy

Prioritised

Solutions

Model

Event

total number of grants per time period etc. The Analyser is
controlled by a Behavioural Policy set by the SP administrator
(see Figure 3). This provides the behavioural norms of the
RBAC/ABAC system, such as: the number of accesses by a role
per minute/hour/day, the frequency of access to a particular
resource, the number of invalid credentials that are received per
time period, the frequency of system grants and denies, etc. Each
behavioural norm has an associated cost, which represents the
cost to the SP of the norm being exceeded, and of no corrective
action being taken. The Analyser determines if the users of the
RBAC/ABAC system are behaving as expected or not, as
determined by the behavioural policy. This is akin to behavioural
analysis performed in intrusion detection systems (IDSs) [6].
Abnormal behaviour could be due to several different reasons,
such as wrongly specified policies in the RBAC/ABAC system,
misuse of resources by authorised people, or attacks by
unauthorised people. If the Analyser determines that abnormal
behaviour has occurred it informs the Solutions Planner about this
(see Figure 4).

The Solutions Planner is driven by a solutions policy, set by the
SP administrator, which contains the various solutions that are
available to counteract the detected abnormal behaviour. For
example, abusive user behaviour can be counteracted by denying
the abusive user(s) further access to the SP’s resource. Federated
users can be denied access to a federated resource via any of the
following actions:

- removing the user’s attributes from the AA’s database

- modifying the AA’s credential issuing policy

- revoking a user’s already issued credentials

- removing resource attributes which identify the user

- modifying the SP’s credential validation policy

- modifying the SP’s access control policy

Each of these solutions has an associated cost. For example,
revoking the credentials of a single user is far less costly to the SP
than modifying the PDP’s access control policy so as to deny all
users access to the abused resource(s). The SP administrator is
required to place a cost against each of the proposed solutions, so
that they can be compared to the cost of the detected abnormal
behaviour. The Solutions Planner needs to compare the Solutions
Policy against the model of the federated RBAC/ABAC system,
as held by the modeller, in order to draw up a list of prioritised
solutions which are more cost effective than leaving the system
alone. It may be that in some cases of minor abnormal behaviour,
such as a student downloading dozens of journal papers in a few
minutes, the cost of preventing the abnormal behaviour is greater
than the cost of the abuse, and so no corrective action will be
taken. However, if the abuse were to continue in a sustained
fashion, then at some point it would become cost effective to take
the corrective action, for example, once the student’s downloads
exceed a hundred journal papers per hour. The Solutions Planner
sends its prioritised list of cost effective solutions to the Executor.

The role of the Executor is to implement the most cost effective
solution, but if this fails, to implement the next highest priority
one until one succeeds. The Executor comprises an Orchestrator
and many different Interface Components (ICs) that communicate
with their respective components of the RBAC/ABAC
infrastructure. The Orchestrator converts the most cost effective

solution into a set of instructions, which it sends to the ICs that
are capable of modifying the various components of the federated
authorization infrastructure. Once a solution has been completed
and executed by all relevant ICs the Orchestrator updates SAAF’s
asset model to ensure that SAAF has a synchronised view of the
actual RBAC/ABAC authorization infrastructure. The Executor
needs to know the specific protocols, policy languages etc. being
used by the monitored RBAC/ABAC system so that it can
incorporate the correct ICs.

Some of the RBAC/ABAC assets being controlled are held in the
SP’s local domain, and therefore SAAF can be given permission
to modify these directly. However, some of the assets belong to
the domains of the remote AAs (i.e. the credential issuing policies
and users’ attributes and credentials), and therefore SAAF would
not normally have permission to modify these. We propose to
solve this in the following way. As part of the federation
agreement, an AA must either give the SP’s SAAF permission to
directly update its assets (i.e. credential issuing policy, user
attribute database or credential revocation list) or agree to provide
a web listening service for SAAF to send update messages to, and
to respond to these updates with confirmation messages within a
specified time period. In this way the Executor can either directly
perform the solutions itself, or can notify the remote AA of the
required solution, then wait for the specified time for a response.
If no response is received in the specified time it can determine
that the solution has failed to be enacted and can move to the next
solution in the list.

Note that only the Executor and the Monitor are dependent upon
the implementation details of the monitored RBAC/ABAC
system, as all the other SAAF components use their own internal
formats for modelling the RBAC/ABAC system, recording usage
statistics and specifying their policies. Thus the majority of SAAF
is independent of the implementation details of the RBAC/ABAC
system that is being controlled, allowing SAAF to be usable with
different implementations of RBAC/ABAC through the
implementation of application specific Monitors and Executor
ICs.

3. DISCUSSION, LIMITATIONS,

CONCLUSION
This position paper presents our current research on “behavioural
control”, which is an attempt to monitor and autonomically
control the behaviour of users within a federated RBAC/ABAC
authorisation system. The research is still at an early stage. To
date we have concentrated on specifying the models, their
essential components, and the authorisation assets that can be
managed in order to control users’ behaviour.

Modelling work that is still required is to:

- Specify the Behavioural Policy in detail,
- Specify the Abnormal Behaviour in detail,
- Specify the Solutions Policy in detail,
- Determine the full set of statistics that need to be

recorded
- Specify the algorithms for determining abnormal

behaviour and determining solutions.

We have to determine which semantics and rules the behavioural
policy language will support based on the complexity of the
constructs and the time it will take to evaluate the rules against the
monitored behaviour.

<BhrRule id="FreqGetSameRes">

 <Resource>"+"</Resource>

 <Action>Get</Action>

 <Op>GT</Op>

 <Rate>

 <Number>5</Number>

 <Time>1</Time>

 <Unit>Min</Unit>

 <Cost>250</Cost>

 </Rate>

 <Rate>

 <Number>20</Number>

 <Time>1</Time>

 <Unit>Day</Unit>

 <Cost>500</Cost>

 </Rate>

</BhrRule>

Figure 3. An Example Behavioural Rule

An example behavioural rule is given in Figure 3. This states that
the rate of requests for the Get action on the same resource
(indicated by “+”) must be no greater than 5 requests per minute,
or 20 requests per day, and the cost of violating each rule is 250
and 500 units respectively. This is a very simple behavioural rule.
More complex rules may involve specifying sequences of actions,
such as downloading a file followed by copying it to a flash disk,
on the same or different resources. Even more complex rules may
involve identifying the same sets of actions being carried out by
different users. Significant research is still needed in this area.

Figure 4 shows an example of flagging abusive abnormal
behaviour. This signals which subjects (identified by their
attributes) have performed which abnormal actions on which
resources, and what the cost of this is to the organisation. In this
example one user, a student with ID 123456, from Kent, has
performed abusive Get actions on two different resources, at a
cost of 1000 units to the organisation (500 per resource as stated
in Figure 3).

<Abuse>

 <Subjects>

 <Subject>ID="123456",Role="student", O="kent.ac.uk"

 </Subject>

 </Subjects>

 <Actions>

 <Action>ID="Get"</Action>

 </Actions>

 <Resources>

 <Resource>ID="www.kent.ac.uk/library"</Resource>

 <Resource>ID="cs.kent.ac.uk/projects"</Resource>

 </Resources>

 <Cost>1000</Cost>

</Abuse>

Figure 4. An Example of Abusive Abnormal Behaviour

The Solutions Policy describes the various corrective actions that
can be taken, and the cost to the organisation of performing each
one of them. Figure 5 shows an example.

<SolutionsPolicy>

 <RemoveSubject>

 <ID>Type=Role,Value="Student"</ID>

 <Cost>100</Cost>

 </RemoveSubject>

 <RemoveSubject>

 <ID>Type=Role,Value="Professor"</ID>

 <Cost>1000</Cost>

 </RemoveSubject>

 <UpdateCVP>

 <RemoveAA>LDAPDN="O=Kent,O=AC,C=UK"</RemoveAA>

 <Cost>100000</Cost>

 </UpdateCVP>

 <UpdateCVP>

 <RemoveAtt>Type=Role,Value="Student"</RemoveAtt>

 <Cost>20000</Cost>

 </UpdateCVP>

 <UpdateCVP>

 <RemoveUA>

 <Attribute>Type=Role,Value="Student"</Attribute>

 <Subject>LDAPDN=""</Subject>

 <AA>LDAPDN="O=Glasgow,O=AC,C=UK"</AA>

 </RemoveUA>

 <Cost>2000</Cost>

 </UpdateCVP>

 <UpdateACP>

 <RemovePA>

 <Attribute>Type=Role,Value=Student</Attribute>

 <Action>ID=Get</Action>

 <Resource>ID="www.kent.ac.uk/library"</Resource>

 </RemovePA>

 <Cost>1000</Cost>

 </UpdateACP>

</SolutionsPolicy>

Figure 5. An Example Solutions Policy

This policy states that removing a single student user from the
system has a cost of 100 units, whereas removing a single
professor has a cost of 1000 units. Updating the credential
validation policy to completely remove the Kent attribute
authority (which means that no credentials issued by Kent will be
trusted) costs 100,000 units, whereas completely removing the
student role (which means that no students from anywhere will be
able to access any resource) has an associated cost to the
organisation of 20,000 units. In comparison, removing the user-
attribute assignment from Glasgow, so that only its student roles
are no longer considered valid, has an associated cost of 2000
units. Updating the access control policy permission attribute
assignment for the student role, so that students can no longer Get
files from Kent’s online library, has an associated cost of 1000
units.

Once the schema for the two policies has been completed, we still
will not know how practical or difficult it will be for
administrators to set and manage them. The more complex the
behavioural rules and solution policies are, the more difficult it
will be for administrators to specify all of them. Conversely, if
they are too simplistic, they will not be sufficient to control all
types of abusive behaviour. Thus significant research is still
needed here.

For SAAF to effectively manage a federated RBAC/ABAC
authorization infrastructure requires accurate and relevant

adaptations against the infrastructure’s assets, in light of abnormal
behaviour. However, the effectiveness of each adaptation is
directly correlated to how well the mechanism for identifying
unexpected behaviour operates and the behavioural rules that
exist. For example, SAAF can only execute an adaptation as a
result of a user breaking rules defined in the behavioural policy. If
only a small subset of rules are defined to capture behaviour on
critical/sensitive access requests then SAAF will only be able to
adapt the infrastructure’s assets in relation to those sensitive
requests.

It is essential than SAAF’s view of the RBAC/ABAC
infrastructure, defined by SAAF’s asset model, is synchronised
with the actual RBAC/ABAC infrastructure. Policies that are
currently active in the infrastructure must also be portrayed in the
asset model. If a policy changes in the target infrastructure then
the asset model must also change. From SAAF’s perspective this
is maintained through the Executor updating the asset model after
every successful adaptation. However this does not cover human
interactions, whereby security administrators change active
policies without SAAFs knowledge. In a federated environment
this becomes even more of a problem, because multiple
distributed credential issuing policies are at risk of being changed
by many different AA administrators. Therefore a mechanism for
monitoring changes in policies must be utilised, with automated
updates to SAAF’s asset model. This will require the SP to trust
the external AAs and give them direct or indirect access to update
SAAF’s asset model.

We have not yet started implementation. This is the next step. Our
plan is to use the PERMIS authorisation system as the first actual
RBAC/ABAC system to be controlled. PERMIS contains APIs
for accessing and updating all its policies, as well as user
attributes and credentials. So SAAF will be able to directly
control all of the assets. PERMIS also records the access requests
and responses using the XACML request/response context format,
so parsing the log records should not be too difficult. We
therefore believe that integration with PERMIS will be relatively
straightforward. Designing the algorithms for determining abusive
behaviour and the appropriate solutions will be more challenging
aspects of the research.

4. ACKNOWLEDGMENTS
This research is funded by an EPSRC studentship.

5. REFERENCES
[1] R. Sandu and J. Park, “Usage Control: A Vision for Next

Generation Access Control,” In Computer Network Security
2776, Springer-Verlag, 2003.

[2] Subramanya, S.R., Yi, B.K. "Digital Rights Management".
IEEE Potentials, March-April 2006. Vol.25 Issue 2. pp 31 -
34

[3] The Guardian “WikiLeaks cables: Bradley Manning faces 52
years in jail”
http://www.guardian.co.uk/world/2010/nov/30/wikileaks-
cables-bradley-manning [accessed: 20 Feb 2011]

[4] C. Bailey, D.W. Chadwick, R. de Lemos, “Self-Adaptive
Authorization Framework for Policy Based RBAC/ABAC
Models,” Proc. 9th Internationl Conference on Dependable,
Autonomic and Secure Computing, (DASC 11), 2011, pp.
37-44.

[5] R. L. "Bob" Morgan, Scott Cantor, Steven Carmody, Walter
Hoehn, and Ken Klingenstein. “Federated Security: The
Shibboleth Approach”. Educause Quarterly. Volume 27,
Number 4, 2004

[6] H. Debar, M. Dacier and A. Wespi, “Towards a taxonomy of
intrusion-detection systems,” Computer Networks, 31, Apr
1999, pp. 805-822.

[7] L. Shi and D. W. Chadwick. “A controlled natural language
interface for authoring access control policies”. Proceedings
of the 2011 ACM Symposium on Applied Computing.
TaiChung, Taiwan, 21-24 March 2011, pp 1524-1530.

[8] OASIS “eXtensible Access Control Markup Language
(XACML) Version 2.0” OASIS Standard, 1 Feb 2005

[9] D.W. Chadwick, G. Zhao, S. Otenko, R. Laborde, L. Su and
T.A. Nguyen, “PERMIS: A modular Authorization
Infrastructure”, Concurrency and Computation: Practice and
Experience 20, Aug. 2008, pp. 1341-1357.

