
Amazon ElastiCache

backed by DynamoDB
Summer Internship Presentation

Daniela Miao

September 26th, 2013

1

Agenda

• Product Overview

• Intern Project Scope

• Achievements – Working Prototype

• Major Challenges

• Design

• Implementation

• Preliminary Performance Results

• Future Work

• Open Questions

• Q&A

2

ElastiCache Product Overview

• In-memory cache in the cloud, backed up the popular

Memcached engine (used by Facebook, Livejournal etc.)

• Improves the performance of web applications by allowing

retrieval of information from fast cache nodes and clusters

• Existing customers: airbnb, PBS, tapjoy etc.

3

ElastiCache Product Overview

• Existing Problems
• In-memory cache lacks data persistence and durability

• Loses all data in case of power outages, node failures or
inadvertent machine reboots

• Customers are interested in getting best of both worlds: scalable
performance of in-memory cache and data reliability across node
reboots.

4

Intern Project Scope

• Explore feasibility of the product and major challenges

• Focus on “set” requests to memcached (write requests to
DynamoDB)

• Prototype focused on solving the major issue of maintaining
consistency across memcached engine and DynamoDB,
without extensively considering error cases

• Generate initial performance results to gain a basic
understanding of the impacts

• Document design progress on wiki, including a quick overview
of the basic memcached architecture (included in Appendix)

5

Achievements – Working Prototype

• Connection between a local instance of ElastiCache

(memcached engine) and DynamoDB instance launched

created via AWS Console

• AWS Console serves all AWS products/services

• Supports manual request (demo completed in Amazon)

• Supports automated requests (stress test including

hundreds of concurrent requests)

• Difficult!

6

Challenges – Design & Implementation

• Memcached is open-source, scalable caching engine

written in C - unfortunately not documented very well

• Libevent enables powerful and efficient connection management

• Major Issues:

1. How to integrate DynamoDB backend without compromising

existing memcached performance (using libevent)

• Current solution: A second thread pool for database operations

2. No existing C Client for DynamoDB

• Current solution: Custom C wrapper around the C++ Client (in dev)

3. Maintaining consistency across memcached engine and

DynamoDB table (behavior with concurrent sets on same key)

• Current solution: Additional counter hash table to keep track of item updates

7

Challenges – Design & Implementation

• Memcached is open-source, scalable caching engine

written in C - unfortunately not documented very well

• Libevent enables powerful and efficient connection management

• Major Issues:

1. How to integrate DynamoDB backend without compromising

existing memcached performance (using libevent)

• Current solution: A second thread pool for database operations

2. No existing C Client for DynamoDB

• Current solution: Custom C wrapper around the C++ Client (in dev)

3. Maintaining consistency across memcached engine and

DynamoDB table (behavior with concurrent sets on same key)

• Current solution: Additional counter hash table to keep track of item updates

8

Consistency Problem

Memcached

command key value

set foo bar

set foo newBar

set foo newestBar

concurrent

1

2

3

set order in
memcached

DynamoDB

command key value

set foo newBar

set foo
newestBa

r

set foo bar

2

3

1

dispatched to
multiple DB
threads, could
arrive at
DynamoDB in
any order

9

Consistency Problem

Memcached

command key value

set foo bar

set foo newBar

set foo newestBar

concurrent

1

2

3

set order in
memcached

DynamoDB

command key value

set foo newBar

set foo
newestBa

r

set foo bar

2

3

1

dispatched to
multiple DB
threads, could
arrive at
DynamoDB in
any order

Memcached has
“newestBar”

DynamoDB has
“bar”

10

• Proposal: keep a counter value per key in a global table

Set request

Store to memcached

Lock the item based on

key

Unlock the item

Increment the counter based on key

Dispatch write request to DynamoDB

Consistency Solution (Naïve)

11

Consistency Problem Revisited

Memcached

command key value counter

set foo bar 1

set foo newBar 2

set foo newestBar 3

concurrent

1

2

3

set order in
memcached

DynamoDB

command key value counter

set foo newBar 2 2

set #2 arrives
at DynamoDB
first, performs
a write if key
“foo” does not
exist,
successfully
writes to DB

12

Memcached

command key value counter

set foo bar 1

set foo newBar 2

set foo newestBar 3

concurrent

1

2

3

set order in
memcached

DynamoDB

command key value counter

set foo newBar 2

set foo newestBar 3

2

3

set #3 arrives,
performs a get
first, checks to
see its own
counter value is
greater than 2.
Performs a write
if current DB
value is still 2

Consistency Problem Revisited

13

Memcached

command key value counter

set foo bar 1

set foo newBar 2

set foo newestBar 3

concurrent

1

2

3

set order in
memcached

DynamoDB

command key value counter

set foo newBar 2

set foo newestBar 3

set foo bar 1

2

3

1

set #1 arrives,
performs a get
first, finds its
counter value
to be less than
2. Aborts
write to
DynamoDB.

Consistency Problem Revisited

14

Preliminary Performance Results

• Local testing using memaslap (memcached engine

running on Developer Desktop, DynamoDB in Oregon)

• Different workloads representing different set/get ratios

• In write-behind, all cases hit the DynamoDB write request limit

(causing many failed sets), except for the low set/get ratio case

0

5000

10000

15000

20000

Average Latency (us) Throughput (OPS/s)

Low Set/Get Ratio
Workload

Baseline Write-Behind Write-Through

0

5000

10000

15000

20000

25000

30000

35000

40000

Average Latency (us) Throughput (OPS/s)

High Set/Get Ratio
Workload

Baseline Write-Behind Write-Through

15

Future Work

Some critical items to turn the prototype into production:

• Extending the consistency solution (across memcached

and DynamoDB table) to write-through scenario as well

• Optimizing the DynamoDB operations in memcached to

reduce latency and increase throughput

• Design a highly concurrent C Client for DynamoDB

• Setting up proper credential management for memcached

engine to access DynamoDB tables

16

Open Questions

• Intern project invokes product definition questions:
• Using DynamoDB as primary data storage, versus just as a backup

• Cache misses could trigger “get” requests to DynamoDB

• At startup, ElastiCache node could be warmed up by existing
DynamoDB table(s)

• Backend configuration (write-behind versus write-through)
• Write-Behind: asynchronous data reads and writes to DynamoDB

• Write-Through: synchronous reads and writes – more persistence!
• Key/value not stored in memcached until write to DynamoDB succeeds

• Default behavior when an asynchronous DynamoDB requests
fail (remove from memcached as well?)

• Is DynamoDB the correct backend support for ElastiCache?
Currently there is a 64KB data limit, memcached’s limit is 1MB.

17

Appendix

18

Preliminary Performance Numbers

Low Set/Get Ratio Scenario

 Average Latency (us) Standard Deviation (us) Throughput (OPS/s)

Baseline 929 2081.81 17191

Write-Behind 1081 11612.8 14782

Write-Through 4239 18704.88 3773

High Set/Get Ratio Workload

 Average Latency (us) Standard Deviation (us) Throughput (OPS/s)

Baseline 1206 1156.5 13244

Write-Behind 1371* 16804.64* 11654*

Write-Through 37424 40095.22 428

*Error rate is very high (~88%) (either because DynamoDB task queues are too full, or memcached is out of memory slabs

19

Dispatcher Thread Class – Listens on
server socket and dispatches connections

to Worker Thread via Libevent

Worker Thread Class – Handles
incoming client connections and uses

Libevent to communicate with
Connection Class

Slab Class –
Handles low-
level memory
management

with slab
allocation

Item Class –
Handles high-

level item
management

in
memcached

Connection Class – Contains
information on all the connections and

handles client requests

Libevent
Class –

Listens on
given file

descriptor
for a set of

events,
and

executes
callback

on
activation

Adds incoming
connection to queue

Notifies Worker
Thread of new
connection queue item

Notifies Connection
Class when a client
request comes in

Original Memcached Design
20

Dispatcher Thread Class – Listens on server
socket and dispatches connections to Worker

Thread via Libevent

Worker Thread Class – Handles incoming
client connections and uses Libevent to

communicate with Connection Class. Work
with Connection Class to dispatch tasks to DB
Worker Thread. Then use Libevent to notify.

Slab Class –
Handles low-
level memory
management

with slab
allocation

Item Class –
Handles high-

level item
management in

memcached
Connection Class – Contains information on

all the connections and handles client
requests

Libevent
Class –

Listens on
given file

descriptor
for a set of
events, and

executes
callback on
activation

Adds incoming
connection to queue

Notifies Worker Thread of
new connection queue item

Depending on write-behind vs. write-
through configuration, notifies Connection
Class when request can continue

DB Worker Thread Class – Handles
read/write to DB and uses Libevent

to notify completion of tasks
DB

Notifies DB Worker Thread to
read/write from DB, DB Worker
responds after completion

Extended Memcached Design
21

