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ElastiCache Product Overview

- In-memory cache in the cloud, backed up the popular
Memcached engine (used by Facebook, Livejournal etc.)

- Improves the performance of web applications by allowing
retrieval of information from fast cache nodes and clusters

- Existing customers: airbnb, PBS, tapjoy etc.
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ElastiCache Product Overview

- Existing Problems
- In-memory cache lacks data persistence and durability

- Loses all data in case of power outages, node failures or
Inadvertent machine reboots

- Customers are interested in getting best of both worlds: scalable
performance of in-memory cache and data reliability across node
reboots.
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Intern Project Scope

- Explore feasiblility of the product and major challenges

- Focus on “set” requests to memcached (write requests to
DynamoDB)

- Prototype focused on solving the major issue of maintaining
consistency across memcached engine and DynamoDB,
without extensively considering error cases

- Generate initial performance results to gain a basic
understanding of the impacts

- Document design progress on wiki, including a quick overview
of the basic memcached architecture (included in Appendix)



Achievements — Working Prototype

- Connection between a local instance of ElastiCache
(memcached engine) and DynamoDB instance launched
created via AWS Console
- AWS Console serves all AWS products/services

- Supports manual request (demo completed in Amazon)

- Supports automated requests (stress test including
hundreds of concurrent requests)
- Difficult!



Challenges — Design & Implementation

- Memcached is open-source, scalable caching engine
written in C - unfortunately not documented very well
- Libevent enables powerful and efficient connection management

- Major Issues:

1. How to integrate DynamoDB backend without compromising
existing memcached performance (using libevent)
« Current solution: A second thread pool for database operations

2. No existing C Client for DynamoDB
* Current solution: Custom C wrapper around the C++ Client (in dev)

3. Maintaining consistency across memcached engine and
DynamoDB table (behavior with concurrent sets on same key)
» Current solution: Additional counter hash table to keep track of item updates



Challenges — Design & Implementation

- Memcached is open-source, scalable caching engine
written in C - unfortunately not documented very well
- Libevent enables powerful and efficient connection management

- Major Issues:

1. How to integrate DynamoDB backend without compromising
existing memcached performance (using libevent)
« Current solution: A second thread pool for database operations

2. No existing C Client for DynamoDB
» Current solution: Custom C wrapper around the C++ Client (in dev)

3. Maintaining consistency across memcached engine and
DynamoDB table (behavior with concurrent sets on same key)
» Current solution: Additional counter hash table to keep track of item updates




Consistency Problem

set order in
memcached

command key value /
- set foo bar 0 N
concurrent — set foo newBar e —
set foo newestBar e

—

dispatched to
DynamoDB multiple DB
threads, could
command key value arrive at

DynamoDB in

set foo newBar 9 any order

set foo newerstBa 9

set foo bar 0



Consistency Problem
emcached
command key value /
set foo bar 0

concurrent — set

foo newestBar

Memcached has

dispatched to

“newestBar”
DynamoDB multiple DB

threads, could

DynamoDB has command key value arrive at
“bar” DynamoDB in
set foo newBar 9 any order

newestBa e




Consistency Solution (Naive)

- Proposal: keep a counter value per key in a global table

Set request
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Consistency Problem Revisited
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Consistency Problem Revisited
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Preliminary Performance Results

- Local testing using memaslap (memcached engine
running on Developer Desktop, DynamoDB in Oregon)

- Different workloads representing different set/get ratios

- In write-behind, all cases hit the DynamoDB write request limit
(causing many failed sets), except for the low set/get ratio case
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Future Work

Some critical items to turn the prototype into production:

- Extending the consistency solution (across memcached
and DynamoDB table) to write-through scenario as well

- Optimizing the DynamoDB operations in memcached to
reduce latency and increase throughput

- Design a highly concurrent C Client for DynamoDB

- Setting up proper credential management for memcached
engine to access DynamoDB tables



Open Questions

- Intern project invokes product definition questions:
- Using DynamoDB as primary data storage, versus just as a backup
- Cache misses could trigger “get” requests to DynamoDB

- At startup, ElastiCache node could be warmed up by existing
DynamoDB table(s)

- Backend configuration (write-behind versus write-through)
- Write-Behind: asynchronous data reads and writes to DynamoDB

- Write-Through: synchronous reads and writes — more persistence!
- Keyl/value not stored in memcached until write to DynamoDB succeeds

- Default behavior when an asynchronous DynamoDB requests
fail (remove from memcached as well?)

- Is DynamoDB the correct backend support for ElastiCache?
Currently there is a 64KB data limit, memcached’s limit is 1IMB.



Appendix



Preliminary Performance Numbers

Low Set/Get Ratio Scenario

Average Latency (us) Standard Deviation (us) Throughput (OPS/s)
Baseline 929 2081.81 17191
Write-Behind 1081 11612.8 14782
Write-Through 4239 18704.88 3773

High Set/Get Ratio Workload

Average Latency (us) Standard Deviation (us) Throughput (OPS/s)
Baseline 1206 1156.5 13244
Write-Behind 1371* 16804.64* 11654*
Write-Through 37424 40095.22 428

*Error rate is very high (~88%) (either because DynamoDB task queues are too full, or memcached is out of memory slabs
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