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ElastiCache Product Overview 

• In-memory cache in the cloud, backed up the popular 

Memcached engine (used by Facebook, Livejournal etc.) 

• Improves the performance of web applications by allowing 

retrieval of information from fast cache nodes and clusters 

• Existing customers: airbnb, PBS, tapjoy etc. 
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ElastiCache Product Overview 

• Existing Problems 
• In-memory cache lacks data persistence and durability 

• Loses all data in case of power outages, node failures or 
inadvertent machine reboots 

• Customers are interested in getting best of both worlds: scalable 
performance of in-memory cache and data reliability across node 
reboots. 
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Intern Project Scope 

• Explore feasibility of the product and major challenges 

 

• Focus on “set” requests to memcached (write requests to 
DynamoDB) 

 

• Prototype focused on solving the major issue of maintaining 
consistency across memcached engine and DynamoDB, 
without extensively considering error cases 

 

• Generate initial performance results to gain a basic 
understanding of the impacts 

 

• Document design progress on wiki, including a quick overview 
of the basic memcached architecture (included in Appendix) 
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Achievements – Working Prototype 

• Connection between a local instance of ElastiCache 

(memcached engine) and DynamoDB instance launched 

created via AWS Console 

• AWS Console serves all AWS products/services 

 

• Supports manual request (demo completed in Amazon) 

 

• Supports automated requests (stress test including 

hundreds of concurrent requests) 

• Difficult! 
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Challenges – Design & Implementation 

• Memcached is open-source, scalable caching engine 

written in C - unfortunately not documented very well 

• Libevent enables powerful and efficient connection management 

 

• Major Issues: 

1. How to integrate DynamoDB backend without compromising 

existing memcached performance (using libevent) 

• Current solution: A second thread pool for database operations 

2. No existing C Client for DynamoDB 

• Current solution: Custom C wrapper around the C++ Client (in dev)  

3. Maintaining consistency across memcached engine and 

DynamoDB table (behavior with concurrent sets on same key) 

• Current solution: Additional counter hash table to keep track of item updates 
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Consistency Problem 

Memcached 

command key value 

set foo bar 

set foo newBar 

set foo newestBar 

concurrent 

1 

2 

3 

set order in 
memcached 

DynamoDB 

command key value 

set foo newBar 

set foo 
newestBa

r 

set foo bar 

2 

3 

1 

dispatched to 
multiple DB 
threads, could 
arrive at 
DynamoDB in 
any order 
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• Proposal: keep a counter value per key in a global table 

Set request 

Store to memcached 

Lock the item based on 

key 

Unlock the item 

Increment the counter based on key  

Dispatch write request to DynamoDB 

Consistency Solution (Naïve) 
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Consistency Problem Revisited 

Memcached 

command key value counter 

set foo bar 1 

set foo newBar 2 

set foo newestBar 3 

concurrent 

1 

2 

3 

set order in 
memcached 

DynamoDB 

command key value counter 

set foo newBar 2 2 

set #2 arrives 
at DynamoDB 
first, performs 
a write if key 
“foo” does not 
exist, 
successfully 
writes to DB 
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Memcached 

command key value counter 
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set order in 
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command key value counter 

set foo newBar 2 

set foo newestBar 3 
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Memcached 

command key value counter 

set foo bar 1 

set foo newBar 2 

set foo newestBar 3 

concurrent 

1 

2 

3 

set order in 
memcached 

DynamoDB 

command key value counter 

set foo newBar 2 

set foo newestBar 3 

set foo bar 1 

2 

3 
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set #1 arrives, 
performs a get 
first, finds its 
counter value 
to be less than 
2. Aborts 
write to 
DynamoDB. 

Consistency Problem Revisited 
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Preliminary Performance Results 

• Local testing using memaslap (memcached engine 

running on Developer Desktop, DynamoDB in Oregon) 

• Different workloads representing different set/get ratios 

• In write-behind, all cases hit the DynamoDB write request limit 

(causing many failed sets), except for the low set/get ratio case 
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Future Work 

Some critical items to turn the prototype into production: 

• Extending the consistency solution (across memcached 

and DynamoDB table) to write-through scenario as well 

• Optimizing the DynamoDB operations in memcached to 

reduce latency and increase throughput 

• Design a highly concurrent C Client for DynamoDB 

• Setting up proper credential management for memcached 

engine to access DynamoDB tables  
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Open Questions 

• Intern project invokes product definition questions: 
• Using DynamoDB as primary data storage, versus just as a backup 

• Cache misses could trigger “get” requests to DynamoDB 

• At startup, ElastiCache node could be warmed up by existing 
DynamoDB table(s) 

 

• Backend configuration (write-behind versus write-through) 
• Write-Behind: asynchronous data reads and writes to DynamoDB 

• Write-Through: synchronous reads and writes – more persistence! 
• Key/value not stored in memcached until write to DynamoDB succeeds 

 

• Default behavior when an asynchronous DynamoDB requests 
fail (remove from memcached as well?) 

 

• Is DynamoDB the correct backend support for ElastiCache? 
Currently there is a 64KB data limit, memcached’s limit is 1MB. 
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Appendix 
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Preliminary Performance Numbers 

Low Set/Get Ratio Scenario 

  Average Latency (us) Standard  Deviation (us) Throughput (OPS/s) 

Baseline 929 2081.81 17191 

Write-Behind 1081 11612.8 14782 

Write-Through 4239 18704.88 3773 

High Set/Get Ratio Workload 

  Average Latency (us) Standard  Deviation (us) Throughput (OPS/s) 

Baseline 1206 1156.5 13244 

Write-Behind 1371* 16804.64* 11654* 

Write-Through 37424 40095.22 428 

*Error rate is very high (~88%) (either because DynamoDB task queues are too full, or memcached is out of memory slabs 
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Dispatcher Thread Class – Listens on 
server socket and dispatches connections 

to Worker Thread via Libevent 

Worker Thread Class – Handles 
incoming client connections and uses 

Libevent to communicate with 
Connection Class 

Slab Class – 
Handles low-
level memory 
management 

with slab 
allocation 

Item Class – 
Handles high-

level item 
management 

in 
memcached 

Connection Class – Contains 
information on all the connections and 

handles client requests 

Libevent 
Class – 

Listens on 
given file 

descriptor 
for a set of 

events, 
and 

executes 
callback 

on 
activation 

 

Adds incoming 
connection to queue 

Notifies Worker 
Thread of new 
connection queue item 

Notifies Connection 
Class when a client 
request comes in 

Original Memcached Design 
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Dispatcher Thread Class – Listens on server 
socket and dispatches connections to Worker 

Thread via Libevent 

Worker Thread Class – Handles incoming 
client connections and uses Libevent to 

communicate with Connection Class. Work 
with Connection Class to dispatch tasks to DB 
Worker Thread. Then use Libevent to notify. 

Slab Class – 
Handles low-
level memory 
management 

with slab 
allocation 

Item Class – 
Handles high-

level item 
management in 

memcached 
Connection Class – Contains information on 

all the connections and handles client 
requests 

Libevent 
Class – 

Listens on 
given file 

descriptor 
for a set of 
events, and 

executes 
callback on 
activation 

 

Adds incoming 
connection to queue 

Notifies Worker Thread of 
new connection queue item 

Depending on write-behind vs. write-
through configuration, notifies Connection 
Class when request can continue 

DB Worker Thread Class – Handles 
read/write to DB and uses Libevent 

to notify completion of tasks 
DB 

Notifies DB Worker Thread to 
read/write from DB, DB Worker 
responds after completion 

Extended Memcached Design 
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