Amazon ElastiCache
backed by DynamoDB

Summer Internship Presentation

Daniela Miao
September 26™, 2013

Agenda

- Product Overview
- Intern Project Scope
- Achievements — Working Prototype

- Major Challenges
- Design
- Implementation
- Preliminary Performance Results
- Future Work
- Open Questions
- Q&A

ElastiCache Product Overview

- In-memory cache in the cloud, backed up the popular
Memcached engine (used by Facebook, Livejournal etc.)

- Improves the performance of web applications by allowing
retrieval of information from fast cache nodes and clusters

- Existing customers: airbnb, PBS, tapjoy etc.

applications

e

&

memcached1 memcached2 I memcached3

ElastiCache Product Overview

- Existing Problems
- In-memory cache lacks data persistence and durability

- Loses all data in case of power outages, node failures or
Inadvertent machine reboots

- Customers are interested in getting best of both worlds: scalable
performance of in-memory cache and data reliability across node
reboots.

ElastiCache/
Memcached

DynamoDB
Cluster

Intern Project Scope

- Explore feasiblility of the product and major challenges

- Focus on “set” requests to memcached (write requests to
DynamoDB)

- Prototype focused on solving the major issue of maintaining
consistency across memcached engine and DynamoDB,
without extensively considering error cases

- Generate initial performance results to gain a basic
understanding of the impacts

- Document design progress on wiki, including a quick overview
of the basic memcached architecture (included in Appendix)

Achievements — Working Prototype

- Connection between a local instance of ElastiCache
(memcached engine) and DynamoDB instance launched
created via AWS Console
- AWS Console serves all AWS products/services

- Supports manual request (demo completed in Amazon)

- Supports automated requests (stress test including
hundreds of concurrent requests)
- Difficult!

Challenges — Design & Implementation

- Memcached is open-source, scalable caching engine
written in C - unfortunately not documented very well
- Libevent enables powerful and efficient connection management

- Major Issues:

1. How to integrate DynamoDB backend without compromising
existing memcached performance (using libevent)
« Current solution: A second thread pool for database operations

2. No existing C Client for DynamoDB
* Current solution: Custom C wrapper around the C++ Client (in dev)

3. Maintaining consistency across memcached engine and
DynamoDB table (behavior with concurrent sets on same key)
» Current solution: Additional counter hash table to keep track of item updates

Challenges — Design & Implementation

- Memcached is open-source, scalable caching engine
written in C - unfortunately not documented very well
- Libevent enables powerful and efficient connection management

- Major Issues:

1. How to integrate DynamoDB backend without compromising
existing memcached performance (using libevent)
« Current solution: A second thread pool for database operations

2. No existing C Client for DynamoDB
» Current solution: Custom C wrapper around the C++ Client (in dev)

3. Maintaining consistency across memcached engine and
DynamoDB table (behavior with concurrent sets on same key)
» Current solution: Additional counter hash table to keep track of item updates

Consistency Problem

set order in
memcached

command key value /
- set foo bar 0 N
concurrent — set foo newBar e —
set foo newestBar e

—

dispatched to
DynamoDB multiple DB
threads, could
command key value arrive at

DynamoDB in

set foo newBar 9 any order

set foo newerstBa 9

set foo bar 0

Consistency Problem
emcached
command key value /
set foo bar 0

concurrent — set

foo newestBar

Memcached has

dispatched to

“newestBar”
DynamoDB multiple DB

threads, could

DynamoDB has command key value arrive at
“bar” DynamoDB in
set foo newBar 9 any order

newestBa e

Consistency Solution (Naive)

- Proposal: keep a counter value per key in a global table

Set request

Lock the item based on
key

[Store to memcached }

y

[Increment the counter based on key }

v

Dispatch write request to DynamoDB

Qlock the |tD

Consistency Problem Revisited

command

set

concurrent — set

set

~——

command

set

key
foo
foo

foo

value

bar

newBar

newestBar

DynamoDB
key value
foo newBar

counter

1

2

3

counter

2

set order in
memcached

—

set #2 arrives
at DynamoDB
first, performs
a write if key
“foo0” does not
exist,
successfully
writes to DB

Consistency Problem Revisited

set order in
memcached
command key value counter /

set foo bar 1

concurrent — set foo newBar 2 e e

set foo newestBar 3

set #3 arrives,
first, checks to
command key value counter see its own
counter value is
9 greater than 2.
Performs a write
set foo newestBar 3 e if current DB

value is still 2

set foo newBar 2

Consistency Problem Revisited

set order in
memcached

command key value counter /

set foo bar 1

Memcached

concurrent — set foo newBar 2 9 e

set foo newestBar 3

set #1 arrives,

DynamoDB performs a get
first, finds its
command key value counter counter value
to be less than
set foo newBar 2 Q 2. Aborts
write to
set foo newestBar 3 e DynamoDB.

Preliminary Performance Results

- Local testing using memaslap (memcached engine
running on Developer Desktop, DynamoDB in Oregon)

- Different workloads representing different set/get ratios

- In write-behind, all cases hit the DynamoDB write request limit
(causing many failed sets), except for the low set/get ratio case

High Set/Get Ratio

Low Set/Get Ratio Workload

Workload

40000
35000
30000
25000
20000
15000
10000

5000
Average Latency (us) Throughput (OPS/s) 0

20000

15000

10000

5000

m Baseline = Write-Behind — ®Write-Through Average Latency (us) Throughput (OPS/s)

mBaseline = Write-Behind ® Write-Through

Future Work

Some critical items to turn the prototype into production:

- Extending the consistency solution (across memcached
and DynamoDB table) to write-through scenario as well

- Optimizing the DynamoDB operations in memcached to
reduce latency and increase throughput

- Design a highly concurrent C Client for DynamoDB

- Setting up proper credential management for memcached
engine to access DynamoDB tables

Open Questions

- Intern project invokes product definition questions:
- Using DynamoDB as primary data storage, versus just as a backup
- Cache misses could trigger “get” requests to DynamoDB

- At startup, ElastiCache node could be warmed up by existing
DynamoDB table(s)

- Backend configuration (write-behind versus write-through)
- Write-Behind: asynchronous data reads and writes to DynamoDB

- Write-Through: synchronous reads and writes — more persistence!
- Keyl/value not stored in memcached until write to DynamoDB succeeds

- Default behavior when an asynchronous DynamoDB requests
fail (remove from memcached as well?)

- Is DynamoDB the correct backend support for ElastiCache?
Currently there is a 64KB data limit, memcached’s limit is 1IMB.

Appendix

Preliminary Performance Numbers

Low Set/Get Ratio Scenario

Average Latency (us) Standard Deviation (us) Throughput (OPS/s)
Baseline 929 2081.81 17191
Write-Behind 1081 11612.8 14782
Write-Through 4239 18704.88 3773

High Set/Get Ratio Workload

Average Latency (us) Standard Deviation (us) Throughput (OPS/s)
Baseline 1206 1156.5 13244
Write-Behind 1371* 16804.64* 11654*
Write-Through 37424 40095.22 428

*Error rate is very high (~88%) (either because DynamoDB task queues are too full, or memcached is out of memory slabs

Original Memcached Design

Libevent
Class -
Listens on
given file
descriptor
for a set of
events,
and
executes
callback
on
activation

<<

4)

Dispatcher Thread Class - Listens on
server socket and dispatches connections
to Worker Thread via Libevent

- J

Notifies Worker

s

Adds incoming

- Thread of new .
connection to queue

connection queue item

-

Worker Thread Class - Handles)

incoming client connections and uses
Libevent to communicate with
Connection Class

_

Notifies Connection

— (Class when a client
request comes in

-

~

Connection Class - Contains
information on all the connections and
handles client requests

V1

4)

Slab Class -
Handles low-
level memory
management
with slab
allocation

- J

A

A 4

~

[

Item Class -
Handles high-
level item
management
in
memcached

- J

- J

-

Libevent
Class -
Listens on
given file
descriptor
for a set of
events, and
executes
callback on
activation

Exter ded Memcached Desigr

Thread via Libevent

Dispatcher Thread Class - Listens on server
socket and dispatches connections to Worker

Notifies Worker Thread of
new connection queue item

Adds incoming
connection to queue

<>

\. Worker Thread. The

_>.(Worker Thread Class - Handles incoming)
€

client connections and uses Libevent to
communicate with

Connection Class. Work
with Connection Clas

$s to dispatch tasks to DB
n use Libevent to notify. /

|_Notifies DB Worker Thread to
read/write from DB, DB Worker
responds after completion

DB Worker Thread Class - Handles
read/write to DB and uses Libevent
to notify completion of tasks

L

-

-

Connection Class - Contains information on
all the connections and handles client

requests

~N

Depending on write-behind vs. write-
through configuration, notifies Connection
Class when request can continue

|

4)

Slab Class -
Handles low-
level memory
management

with slab
allocation

_ J
A

%
4)

Item Class -
Handles high-
level item
management in
memcached

J

- J

