
Towards accountable information systems

Peter Druschel, Max Planck Institute for Software Systems (MPI-SWS)

Joint work with Eslam Elnikety, Deepak Garg, Aastha Mehta, Anjo Vahldiek

In this extended abstract, we sketch our current
work on enforcing declarative policies for data confi-
dentiality, integrity, and access accounting in general
computer systems. Enforcing data policies is a step
towards the long-term vision of fully accountable in-
formation processing systems.

In our system model, each data object has an
attached policy, which reflects the data subject or
owner’s choices, the data handler’s policy, as well
as applicable laws. The policy is then enforced re-
gardless of how and where the data is processed and
stored. Moreover, authorized parties can obtain cryp-
tographic certificates that attest data objects and the
policy in effect.

A policy-enforcement and attestation facility of
this type enables stakeholders to specify the policy
in effect for (a class of) data objects in a high-level,
declarative fashion. Policy compliance rests only on
the integrity of an enforcement kernel with a small
trusted computing base and attack surface, as well
as any explicit policy dependencies (e.g. time, user
credentials).

Stakeholders can reason about compliance without
requiring access to, or an understanding of, data han-
dlers’ computing infrastructure. At the same time,
data handlers can verify and demonstrate their com-
pliance by disclosing their enforcement kernel.

Policies can specify who can access a data object
(access control), in which compute environment (re-
mote attestation), and under what conditions (e.g.,
time). Update policies may specify structural in-
tegrity constraints (invariants) within and across ob-
jects. Finally, policies may specify mandatory side
effects for accesses to a data object, such as access
logging to a log file with an append-only policy.

1 Guardat

As a first step, we have designed and implemented
Guardat, an architecture that enforces data policies
at the storage layer. Users, application developers
and system administrators can provide per-object
policies to Guardat. Guardat enforces these policies

and provides attestations about the state of stored
objects. With Guardat, the data integrity, confiden-
tiality and access accounting rules for a collection of
objects can be stated as a single declarative policy.
Policy enforcement relies only on the integrity of the
Guardat controller and any external policy depen-
dencies; it does not depend on correct software, con-
figuration and operator actions in other parts of a
system. Guardat allows developers, system admin-
istrators and third-party hosting platform providers
to enforce concise, system-wide data protection and
accounting policies based on a small trusted comput-
ing base, and to demonstrate their compliance to any
party that trusts the Guardat enforcement compo-
nent.

Motivation As the volume and value of digital as-
sets stored in persistent mass storage keep increasing,
so do the risks to the integrity, confidentiality and us-
age accountability of said data. Computer and stor-
age systems are increasing in complexity, exposing
data to risks from software bugs, security vulnerabil-
ities and human error. In addition, data is increas-
ingly processed and stored on third-party platforms,
introducing additional risks like unauthorized data
use by third parties.

In existing systems, the confidentiality, integrity
and usage accountability of persistent data depend on
the absence of design errors, malware and bugs in all
layers of software (including device drivers, storage
subsystem, file system and operating system). For
data stored on third-party platforms, data confiden-
tiality and integrity, as well as proper accounting of
data use, additionally depend on the absence of mal-
ice and error on the part of the third-party provider.

Design Guardat provides policy enforcement and
data certification at the storage layer. With Guar-
dat, users, developers and administrators can state
the integrity, confidentiality, and accounting rules for
a collection of data objects using a concise, declara-
tive policy language. Applications communicate with
Guardat through secure channels, tunneling through
untrusted system layers like storage servers or hosting

1



platforms. Applications send policies, commands and
evidence of policy compliance (e.g., proof of authenti-
cation) to Guardat and request attestations of stored
data and their policies from Guardat. Guardat en-
forces the policies while relying only on its own inter-
preter and enforcement logic and any explicit policy
dependencies, thus minimizing both the computing
base relied upon for enforcement and its attack sur-
face.

Policies A Guardat policy specifies the conditions
under which an object may be read, updated, or have
its policy changed. These conditions, written in a
simple but expressive declarative language, may de-
pend on client authentication, the initial and final
states of the object (size and content) in an update
transaction, or signed statements by external trusted
components (certifying, for instance, the current wall-
clock time or the configuration of the client’s compute
platform). Guardat stores the policy as part of its
own metadata and ensures that each access to the
object complies with the policy.

Following are some example Guardat policies that
mitigate important threats: System binaries can be
protected from viruses through a policy that allows
modification only when the updated binary is signed
by a trusted party; system log corruption and tam-
pering can be avoided through a Guardat-enforced
append-only policy; accidental deletion or corruption
of backup data can be prevented by a policy that pre-
vents modification for a specific period of time; confi-
dentiality of a user’s private data can be enforced by
allowing reads only in a session authenticated by the
user’s public key; and, accesses to a data object can
be permitted only if a corresponding access record is
added to an append-only log file, enforcing manda-
tory access logging.

While these policies can be readily implemented
in higher software layers, the merit of using Guardat
is that the policy applicable to a collection of data
objects can be specified using a concise, declarative
language, and enforced by a small trusted comput-
ing base (TCB) with a small attack surface. Guardat
complements existing techniques for ensuring the re-
liability of data processing systems, including soft-
ware testing, verification, security auditing, sealed
data and trusted computing. While no technique can
provide comprehensive protection, Guardat provides
a safety net that protects a system’s persistent data
from a wide range of threats. Moreover, Guardat
can demonstrate compliance with client and provider
policies, as well as applicable laws to any party that
trusts Guardat.

Guardat can provide additional benefits in multi-

party environments where all parties trust Guardat,
e.g., a client storing her data at a hosting provider,
or a service provider allowing caching of parts of its
database on a client device. Here, Guardat can en-
force the data owner’s policies on third-party data
accesses, and the data holder can use Guardat to
demonstrate its compliance with client and provider
policies.

Design principles The Guardat design is based on
three principles. First, enforcing policy at the stor-
age layer minimizes the TCB and its attack surface.
Second, a simple, declarative policy language allows
the concise specification of all policy related to a col-
lection of data objects. Third, the policy language
supports a small set of declarative primitives expres-
sive enough to specify the access policy, leaving it to
untrusted code to provide the mechanism required to
satisfy the policy.

Implementation Guardat can be implemented in
different ways, depending on the deployment sce-
nario and threat model. For instance, an integra-
tion into a VMM or secure OS enforces policy on
all VM/application storage accesses, but requires the
VMM or OS to be trusted; an integration into a SAN
server enforces the policy on all accesses from net-
work clients as long as the server is trusted; while
an integration into the controller of a storage device
or host adapter enforces the policy on all accesses as
long as the controller chip is not compromised.

Preliminary results We have built an initial TS
prototype by extending the open-source iSCSI Enter-
prise Target (IET) SAN server. The server contains a
conventional hard-disk drive to store data and a small
solid-state drive to store metadata including policies.
To export the Guardat functionality to applications,
we extend the familiar POSIX file API. A library
linked with applications implements this API and
communicates with Guardat devices through IOCTL
calls (which the OS and file system pass to the Guar-
dat device driver uninterpreted), thus maintaining
compatibility with existing, unmodified file systems.
Prelimiary experimental results based on micobench-
marks, as well as an Apache web server, indicate that
Guardat can enforce polices with low overhead.

2 Extensions

In ongoing work, we are developing extensions to en-
able the use of Guardat in hosted Cloud environ-
ments. The goal is to enable Cloud operators to en-

2



force user-provided integrity, confidentiality and ac-
counting policies, their own privacy, integrity and
data retention policies as well as applicable laws, and
to enable them to demonstrate their compliance.

The existing Guardat design and prototype en-
forces per-object policies stored on individual Guar-
dat devices, effectively constraining information flow
to and from the device according to a single policy
provided by the data owner. In a Cloud storage en-
vironment, this design is too limited. For instance,
the storage operator is unable to control the replica-
tion and migration of user data in a policy compliant
manner.

We are designing extensions to the Guardat policy
language, interface and implementation suitable for a
distributed third-party storage environment. The ex-
tensions (i) allow customers to specify policies for the
replication and migration of data and guarantee pol-
icy compliance, while enabling an untrusted storage
provider to orchestrate the replication and migration
of user data; (ii) enable customers to specify rich ac-
counting policies like mandatory access logging in the
presence of data replication and migration; and (iii)
enable storage providers to enforce their own policies
as well as applicable laws using Guardat. The exten-
sions enable policy-compliant replication and migra-
tion of user data across Guardat devices, orchestrated
by the untrusted provider system.

In further work, we are extending the existing
Guardat capability to remotely attesting a client’s
compute platform to also assert certain properties of
an otherwise untrusted client computation. For in-
stance, if a trusted hardware, OS or VMM platform
attests that a client computation can perform I/O
only to and from Guardat devices, then it is possi-
ble to ensure policy compliance even while granting
such an encapsulated but untrusted computation ac-
cess to data. With this extension, it will be possible
to enforce data confidentiality, integrity and account-
ing policies, as well as provenance and declassification
policies, on an entire multi-stage, distributed data
processing system.

3


	Guardat
	Extensions

