
Achieving Accountability
with Distributed Data Usage Control Technology

Alexander Pretschner
Technische Universität München, Germany

pretschner@in.tum.de

ABSTRACT
Distributed data usage control technology enforces obliga-
tions on future data usage in a preventive or a detective
manner. The goal of preventive enforcement is to make sure
that a data usage policy is adhered to. The goal of detective,
or optimistic, enforcement is to maintain a log of policy vio-
lations, which directly provides technical means for account-
ability. Depending on the underlying trust model, available
technology, and economic considerations, either enforcement
strategy may be applicable in a specific context. Technically
speaking, these two seemingly different strategies can be im-
plemented by identical technologies. In this position paper,
we present such technology for data usage control enforce-
ment that turns out to be a natural candidate for systems
that enable accountability.

1. INTRODUCTION
Distributed data usage control (UC) policies stipulate rights

and duties concerning the future usage of data [10, 11]. Pre-
ventive enforcement is regularly used in systems for digital
rights management where the value of the protected data
items is comparably small, e.g., 99 cents for a song. The
underlying assumption is that the recipient of a data item
cannot be trusted. In contrast, detective enforcement is used
in situations where a baseline of trust has already been es-
tablished. This is the case, for instance, in outsourcing con-
tracts, or if non-disclosure agreements are signed [12]. In
this paper, we present UC enforcement technology that can
be used for both detective and preventive enforcement, and
thus for implementing accountability. To do so, we present
UC requirements in §2 and show how they can be enforced by
UC technology in §3, which includes a discussion of policies,
enforcement, data flow tracking within and across layers of
abstraction and within and across single machines, declassi-
fications based on data quantities, provenance tracking, and
ways to protect the infrastructure itself. We connect this
technology to accountability in §4 and conclude in §5.

Position paper for the 2nd International Workshop on Accountabil-
ity: Science, Technology and Policy at MIT, Boston, January 30th,
2014. Workshop website http://dig.csail.mit.edu/2014/
AccountableSystems2014/.
.

2. REQUIREMENTS
In addition to classical attribute-based access control and

separation of duty requirements, UC policies stipulate tem-
poral constraints (“never disseminate,” “delete after thirty
days,”“retain at least five years,”“don’t publish before 6pm,”
“don’t show before explicit consent is given”), spatial con-
straints (“don’t store outside the EU,” “must not leave the
hospital”), cardinality constraints (“not more than two copies,”
“show at most five times”), duties or rights triggered by
events (“upon notification, delete data,”“don’t disseminate
after notification”), quantitative constraints (“release at most
10% in total,” “never release more than .1% per day”), or-
ganizational and technical environment constraints (“only
store in environments certified according to ISO 27001,”
“only store in systems with firewalls certified according to
the common criteria,” “don’t release to a mobile device”),
and purpose (“only use for statistical purposes,”“don’t show
in public”). This list is open to future additions; we believe
it captures the essence of data usage policies and, therefore,
a majority of the constraints relevant for accountability.

In addition to these more technical requirements, data UC
requirements include the need to distinguish between data
and representations of the data. If a colored photo stored in
file f must not be copied, then one likely wants that all rep-
resentations of that photo should not be copied: no screen-
shots of the photo when displayed on a screen, no verbatim
copies of file f , no black-and-white transformations of the
photo, no versions of the photo in a different format, possi-
bly no cropped versions of the picture, etc. These examples
also show that one may want to specify that derivations of a
data item are not be legal, which becomes particularly rele-
vant in aggregation contexts for statistics or big data. This
then implies the need to specify declassifications of data [16]
(“if data item is aggregated with >1000 other items, the
original policy does not apply”).

Then, in addition to the above-mentioned requirements as
constraints on data usage, the usage itself must be defined.
“Deletion” comes with various technical semantics [15] per-
taining to the actual degree of deletion (removing a FAT
entry as opposed to overwriting a file randomly 1000 times),
the location (on one hard disk as opposed to all archival
tapes in addition), the nature of deletion (throwing away the
key of an encrypted file as opposed to delting the file). Dele-
tion becomes particularly challenging if data exists in vari-
ous representations at multiple, physically possibly disjoint,
locations. Similarly, “copying” needs to be defined. One ap-
proach is to specify that copying has taken place whenever a
new representation of a data item is created. Given that ev-

http://dig.csail.mit.edu/2014/AccountableSystems2014/
http://dig.csail.mit.edu/2014/AccountableSystems2014/


ery information processing device creates copies of data by
simply loading it to memory, more fine-grained definitions of
“copy” need to be defined. As in the case of tracking repre-
sentations, sensible declassifications need to be understood,
specified, and integrated into the policy language.

Similar to the need of precisely defining “usage,” “data”
needs to be defined. For instance, precisely what data con-
stitutes the profile of a social network? Does this include,
for instance, the fact that a page is liked? Does it include
comments or traffic data?

The example of a social network profile also motivates
the need for policy compositions. Arguably, the photos and
posts pertaining to a profile are equipped with a policy de-
signed by the owner of the profile. Comments from other
parties that relate to parts of the profile, in contrast, are
likely to be equipped with different, possibly (and likely)
conflicting schemas. The policy language’s semantics hence
need to come with useful and pragmatic definitions of com-
position and/or conflict resolution.

Finally, since data usage policies are security policies, one
may want to parameterize them by the risk incurred if the
policy was violated. This includes estimates of the impact of
the violation and possibly its likelihood, two parameters that
turned out to be hard to measure and/or predict, in part
because these parameters are highly situation-dependent.

3. DISTRIBUTED DATA USAGE CONTROL

3.1 Policies
The first set of requirements of Section 2 (constraints)

can be formalized using a combination of temporal and first
order logics, as proposed in various forms by several au-
thors [18, 5, 1]. At the logical level, constraints concerning
(attribute-based) access control, separation of duties, envi-
ronment and purpose can be pushed into an external pred-
icate eval(·) that provides the necessary information and
that is outside the scope of the logic itself. For instance,
requirements pertaining to purpose can be pushed to the
eval predicate that encapsulates complex logics to decide if
a data usage adheres to a given purpose [17].

When specifying constraints on data usage, it is rather
simple to distinguish between usages of one specific repre-
sentation and the set of all representations, provided that
respective tracking technology is in place. This kind of poli-
cies can be specified, for instance, by the language presented
by Lovat et al. [14], also for quantitative constraints [8].

These policies need to be augmented by declassification
policies. A large body of work on declassification policies
exists but has, to our knowledge, not yet been integrated
with data usage policies.

Because of the necessity of defining semantics for “usage”
and “data”, there must be sophisticated refinement schemas
as described by Kumari et al. [7]. These early experiences
show that these definitions are extremely complex, and that
there is a need for methodological support.

Clearly, a user-friendly concrete syntax must be provided
to hide the details of the abstract syntax of first order tem-
poral logics. One approach here is to use standardized tem-
plates in natural language that are particularly appealing
because in our experience, most real-world policies tend to
be rather simple and captured by a set of five to six tem-
plates. Similar findings have been discussed for formal spec-
ifications of reactive systems [4].

3.2 UC Enforcement
UC policies can be specified declaratively and operationally.

A declarative policy “unanonymized data must never leave
the system without logging” can preventively be enforced
by several operational strategies [13]: by anonymizing data
(modification), blocking send events (inhibition), and log-
ging the send action (execution). It can also detectively be
enforced by detecting and logging policy violations. Either
way, enforcement relies on checking a condition, which is
usually embodied in a policy decision point (PDP), and also
on taking one of the specified actions, which is usually em-
bodied in a policy enfocrement point (PEP). Depending on
the deployment context and on the policies, both runtime
verification and complex event processing technologies can
be used to implement PDPs.

3.3 Data Flow Tracking
Because of the need to protect data in the sense of protect-

ing all representations of the data, it is necessary to track the
various representations of data. This problem has been stud-
ied extensively in the context of information flow, or data
flow, tracking, and can be performed both statically and dy-
namically. Practical problems usually concern the identifica-
tion of sources and sinks; the problem of protection bound-
aries; and, more problematically, the problem of overapprox-
imations, specifically so if data flows are considered that are
a result of branching over a secret. If a policy language dis-
tinguishes between data and representations [14], then the
respective monitoring technology (PDP+PEP) needs to be
extended by a policy information point (PIP) that main-
tains the mapping between data and all its representations
and that is consulted by the PDP.

3.4 Multiple Layers of Abstraction
If a picture (data) exists in the form of several identical

files (representations), then these representations reside at
the same level of abstraction, namely the operating system,
as does a file that contains the same picture in a different
format. However, the picture may also exist as a DOM
object in a browser application or as a pixmap on a screen.
In this case, data flow tracking technology must cater to
the problem of data being converted into representations at
several layers of abstraction (OS, browser, window manager,
etc.). In general, this can only be done at runtime; in a
respective system, there are hence multiple PEPs, one per
layer of abstraction. One proposal to perform this cross-
layer tracking is described by Lovat et al. [14].

3.5 Distributed Systems
The above considerations assume that representations of

a data item exist within one machine only. However, the
idea easily generalizes to distributed systems where a re-
mote machine is considered as another (hierarchical) layer
of abstraction, as proposed by Kelbert et al. [6]. The idea
here is that whenever data is shipped to another system, the
respective UC policies are shipped along with it.

3.6 Quantitative Measurements
Because of the overapproximations induced by informa-

tion flow tracking, declassification [16] has long been ac-
knowledged to be a key enabler for information flow track-
ing technology. One possbility to perform declassifications
is on the grounds of quantities, as proposed by Lovat et al.



[8]: data is considered to be non-sensitive if only a “small”
amount of data has been leaked.

3.7 Provenance Tracking
The general idea of performing data flow tracking within

and across systems as discussed above immediately provides
one possible way to perform provenance tracking. Within
one system, one policy simply specifies that every access
needs to be logged. If data is passed across systems, then
not only the policy is shipped along with the system, but
also information on its prior usage and the locations where
it was stored [2].

3.8 Securing the Infrastructure
In order to enforce UC requirements, the sketched dis-

tributed data UC infrastructure must be deployed at the
sites of all communication partners. In general, this seems
like a strong assumption which may, however, be justified
in specific scenarios such as company-owned devices. In a
sense, app stores like iTunes already provide such half-closed
environments. However, in any case, it must be ensured
that the infastructure is not tampered with. If the user of a
usage-controlled system can be assumed not to possess root
privileges, this appears feasible. If the user is a privileged
root, however, then protection becomes more problematic
and, depending on the desired level of protection, needs to
be rooted in hardware with tamper-proof logs [9] for ex-
ternal auditing; or can, with fewer guarantees, be done via
obfuscation and white-box cryptography [3].

4. ACCOUNTABILITY
So far, we have concentrated on possible UC requirements

and their formalization in policies; on how to technically en-
force policies (preventive enforcement) or detect whether or
not they are adhered to (detective enforcement); and how to
make sure that the respective monitoring technology is not
tampered with. What is missing is the link with account-
ability. We adopt the definition that “an accountable sys-
tem is one that can be examined to assess whether policies
(e.g., system specifications, information use and disclosure
policies) are being followed, and possibly facilitates holding
individuals or institutions responsible in the event that the
policies are violated.1” In this paper, we tackle the technical
perspective only and therefore do not discuss how to hold in-
stitutions responsible. We thus need to show how to use the
introduced UC infrastructure for (technical) accountability.
In fact, this is straightforward: If only declarative policies
are used in conjunction with detective enforcement, policy
violations can simply be logged. If operational policies are
used for preventive enforcement, we can use the same tech-
nology to log the fact that potentially policy-violating user
actions have been attempted. In terms of ensuring system-
wide accountability, we can use the results described above
in terms of cross-layer data flow tracking and cross-machine
provenance tracking. Using the (then possibly distributed)
logs, we can re-use the UC infrastructure to issue warnings
if specific conditions are met.

In the abstract, we have argued that detective and pre-
ventive enforcement essentially rely on the same technology.
The reason is that the PDPs from §3.2 are independent of
the respective PEPs; and logging or notifying about policy

1dig.csail.mit.edu/2014/AccountableSystems2014/

violations can be seen as preventive enforcement strategies
for executing specified actions. In other words, if a pol-
icy violation can be observed, then it is in many cases also
technically possible to prevent its violation, and vice versa.
Practically speaking, this is not always the case, however: if
system calls at the level of an operating system, for instance,
are blocked, many processes will crash because the respec-
tive code has not been implemented defensively. In this case,
UC technology is too intrusive. Moreover, to avoid an un-
desired situation, a preventive strategy may need to “look
into the future” to establish whether or not the undesired
situation would actually occur if the data usage request was
granted. This is often impractical for, say, data bases be-
cause the need of rollbacks. However, it is also possible to
specify policies on the grounds of undesired events rather
than undesired situations, i.e., system states.

In sum, apart from several challenges discussed in the next
section, existing UC technology seems fit to be used for ac-
countability purposes.

5. CHALLENGES AND CONCLUSIONS
There are several challenges with technical realizations of

accountability with UC technology. A major one is the es-
tablishment of adequate levels of abstraction: what exactly
does usage mean? Usage at the level of system calls is likely
too fine-grained [7]. This challenge comes along with scala-
bility concerns both in terms of space (storage of usage in-
formation and provenance graphs) and time (for monitoring
a system).

Then, if data leaves the digital realm, e.g., by photograph-
ing a screen, protection becomes more difficult. This media
break, however, can sometimes be alleviated by means of
watermarks or infrared LEDs or special monitors.

Technically speaking, it is not always simple to perform
conflict resolution between policies, particularly so if they
pertain to independent parts of a data item but make state-
ments about the entire data item.

Usability of course is far from trivial: who would specify
the policies, who would determine the level of abstraction
for monitoring, and how would policy violations be commu-
nicated?

It is not entirely clear who should be allowed to specify
a policy. Potential candidates are owners of the data, pos-
sessors of the data, or further parties, e.g., a company, the
provider of a service, or the government. The complexity of
ownership of data is exemplified by traffic data in a social
network: is this traffic data owned by the telecommunica-
tion provider? By the provider of the social network? By the
person who accesses a profile? By the person whose profile
is accessed? Any combinations hereof?

From a less technical perspective, data protection quickly
becomes an issue. If provenance tracking technology for en-
abling accountability is fully implemented, then this means
that data from different sources can be combined. While
European data protection legislation contains the right to
be informed about which personal data is stored by a com-
pany or government, implementing this right may create a
data protection problem that is larger than the one we set
out to handle: combined data is in many cases more sensi-
tive than the sensitivity of the atomic parts alone. This then
directly implies the need for controlling the usage or users
of the accountability system, a recursive implementation of
the above ideas.

dig.csail.mit.edu/2014/AccountableSystems2014/


References
[1] D. Basin, F. Klaedtke, and S. Müller. Monitoring se-

curity policies with metric first-order temporal logic.
In Proceedings of the 15th ACM Symposium on Access
Control Models and Technologies, SACMAT ’10, pages
23–34, 2010. ISBN 978-1-4503-0049-0.

[2] C. Bier. How usage control and provenance tracking
get together - a data protection perspective. 2012 IEEE
Symposium on Security and Privacy Workshops, 0:13–
17, 2013.

[3] S. Chow, P. A. Eisen, H. Johnson, and P. C. van
Oorschot. White-box cryptography and an aes imple-
mentation. In Selected Areas in Cryptography, pages
250–270, 2002.

[4] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Pat-
terns in property specifications for finite-state verifica-
tion. In Proceedings of the 21st International Confer-
ence on Software Engineering, ICSE ’99, pages 411–420,
1999. ISBN 1-58113-074-0.

[5] M. Hilty, A. Pretschner, D. A. Basin, C. Schaefer, and
T. Walter. A policy language for distributed usage con-
trol. In ESORICS, pages 531–546, 2007.

[6] F. Kelbert and A. Pretschner. Data usage control en-
forcement in distributed systems. In CODASPY, pages
71–82, 2013.

[7] P. Kumari and A. Pretschner. Model-based usage con-
trol policy derivation. In ESSoS, pages 58–74, 2013.

[8] E. Lovat, J. Oudinet, and A. Pretschner. On quantita-
tive dynamic data flow tracking. In Proc. CODASPY,
2014. To appear.

[9] R. Neisse, D. Holling, and A. Pretschner. Implementing
trust in cloud infrastructures. In CCGRID, pages 524–
533, 2011.

[10] J. Park and R. Sandhu. The ucon abc usage control
model. TISSEC, pages 128–174, 2004.

[11] A. Pretschner, M. Hilty, and D. A. Basin. Distributed
usage control. Commun. ACM, 49(9):39–44, 2006.

[12] A. Pretschner, F. Massacci, and M. Hilty. Usage control
in service-oriented architectures. In TrustBus, pages
83–93, 2007.

[13] A. Pretschner, M. Hilty, D. Basin, C. Schaefer, and
T. Walter. Mechanisms for Usage Control. In Proc.
ASIACCS, pages 240–245, 2008.

[14] A. Pretschner, E. Lovat, and M. Büchler.
Representation-independent data usage control.
In Proc. SETOP/DPM, pages 122–140, 2011.

[15] J. Reardon, D. A. Basin, and S. Capkun. Sok: Secure
data deletion. In IEEE Symposium on Security and
Privacy, pages 301–315, 2013.

[16] A. Sabelfeld and D. Sands. Dimensions and principles
of declassification. In CSFW, pages 255–269, 2005.

[17] M. C. Tschantz, A. Datta, and J. M. Wing. Purpose
restrictions on information use. In ESORICS, pages
610–627, 2013.

[18] X. Zhang, J. Park, F. Parisi-Presicce, and R. S. Sandhu.
A logical specification for usage control. In SACMAT,
pages 1–10, 2004.


	Introduction
	Requirements
	Distributed Data Usage Control
	Policies
	UC Enforcement
	Data Flow Tracking
	Multiple Layers of Abstraction
	Distributed Systems
	Quantitative Measurements
	Provenance Tracking
	Securing the Infrastructure

	Accountability
	Challenges and Conclusions

