
User-controlled Privacy for Personal Mobile Data

by

Sharon Myrtle Paradesi

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Engineer in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2014

c© Massachusetts Institute of Technology 2014. All rights reserved.

Author .
Department of Electrical Engineering and

Computer Science
August 15, 2014

Certified by .
Lalana Kagal

Principal Research Scientist, Computer Science and Artificial Intelligence
Lab

Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chair, Department Committee on Graduate Theses

2

User-controlled Privacy for Personal Mobile Data

by

Sharon Myrtle Paradesi

Submitted to the Department of Electrical Engineering and
Computer Science

on August 15, 2014, in partial fulfillment of the
requirements for the degree of
Engineer in Computer Science

Abstract

Smartphones collect a wide range of sensor data, ranging from the basic, such as location,
accelerometer, and Bluetooth, to the more advanced, such as heart rate. Mobile apps on the
Android and iOS platforms provide users with “all-or-nothing” controls during installation
to get permission for data collection and use. Users have to either agree to have the app
collect and use all the requested data or not use the app at all. This is slowly changing with
the iOS framework, which now allows users to turn off location sharing with specific apps
even after installation.

MIT Living Lab platform is a mobile app development platform that uses openPDS to
provide MIT users with personal data stores but currently lacks user controls for privacy.
This thesis presents PrivacyMate, a suite of tools for MIT Living Labs that provide user-
controllable privacy mechanisms for mobile apps. PrivacyMate aims to enable users to
maintain better control over their mobile personal data. It extends the model of iOS and
allows users to select or deselect various types of data (more than just location information)
for collection and use by apps. Users can also provide temporal and spatial specifications
to indicate a context in which they are comfortable sharing their data with certain apps.
We incorporate the privacy mechanisms offered by PrivacyMate into two mobile apps built
on the MIT Living Lab platform: ScheduleME and MIT-FIT. ScheduleME enables users to
schedule meetings without disclosing either their locations or points of interest. MIT-FIT
enables users to track personal and aggregate high-activity regions and times, as well as view
personalized fitness-related event recommendations. The MIT Living Lab team is planning
to eventually deploy PrivacyMate and MIT-FIT to the entire MIT community.

Thesis Supervisor: Lalana Kagal
Title: Principal Research Scientist, Computer Science and Artificial Intelligence Lab

3

4

Acknowledgments

Completing the work for this degree in one year was no easy feat and I am thankful to a

number of people, both at MIT and outside, for supporting me through this endeavor.

Dr. Lalana Kagal, my research supervisor, has been extremely understanding and con-

siderate throughout the process of this degree and research. I greatly enjoyed working with

her and appreciated the technical expertise and insight she provided during the course of this

thesis. I sincerely thank Prof. Samuel Madden and Elizabeth Bruce from the MIT Big Data

Initiative at CSAIL (bigdata@CSAIL) for funding my research and for giving valuable feed-

back. I thank Brian Sweatt for mentoring me beyond just providing technical help during

the implementation. I am thankful for his help and guidance that enabled me to grow into

a better software developer. Along the same lines, I thank Dr. Ilaria Liccardi for her help

in writing technical papers and for stimulating scientific thought. Myra Hope Eskridge and

Laura Watts from the IS&T Department and Albert Carter provided valuable development

guidance and help with the UI/UX design for which I am thankful. I thank Oshani Senevi-

ratne, Fuming Shih, Daniela Miao, Andrei Sambra and other members of the Decentralized

Information Group (DIG) for their input over the course of this project. Marisol Diaz (from

DIG) and Susana Kevorkova (from bigdata@CSAIL) have been very helpful in coordinat-

ing presentations, roundtable discussions, and general support. In addition to Dr. Lalana

Kagal, I am indebted to Prof. Hal Abelson, Prof. Leslie Kolodziejski, Janet Fischer, and

Prof. Dina Katabi for their patience with me and for their guidance regarding the degree

options after my Masters degree. Outside of CSAIL, I am thankful to Emily and Marcus

Gibson, Michelle Chang, Becky Mieloszyk, Sunday Trevino, Kimberlee Thorburn, Melanie

Vaughn, and friends from the Cambridgeport Baptist Church for their support, prayers and

encouragement.

Last, but not the least, I am greatly thankful to my family for showing me unconditional

love, support and encouragement. My father, Suresh Paradesi, mother, Dr. Mary Gollapalli,

nephews, sister-in-law and brother, Matthias, Emmanuel, Esther, and Martin Paradesi have

been a great blessing to me. Above all, I am humbly thankful to my God for His grace,

mercy, and love.

5

6

Contents

1 Introduction 17

1.1 Motivation . 17

1.2 Related Work . 19

1.3 Contributions of this thesis . 21

1.4 Thesis Overview . 22

2 Existing Infrastructure 25

2.1 MIT Living Lab Architecture . 25

2.1.1 openPDS . 26

2.1.2 MIT Mobile App . 27

2.1.3 DataHub . 28

2.2 A Closer Look at openPDS . 28

2.2.1 Question and Answer Framework . 29

2.2.2 Group Computation . 29

2.3 What’s Missing? . 30

2.4 Requirements Gathering . 31

2.4.1 Procedure . 31

2.4.2 Participants . 31

2.4.3 Takeaways . 32

2.5 Summary . 33

3 PrivacyMate: User-Controllable Privacy Mechanisms for Living Labs 35

3.1 Functional Architecture of PrivacyMate . 35

7

3.2 PrivacyMate’s Privacy Mechanism . 36

3.2.1 Opt-in to Data Collection . 39

3.2.2 Opt-in to Data Aggregation . 40

3.2.3 Context Definition . 40

3.2.4 Preference Enforcement . 41

3.3 Tutorial: How to build a new lab on openPDS and PrivacyMate 43

3.3.1 On the openPDS server . 43

3.3.2 On the MIT Mobile Living Lab App client 48

3.4 Summary . 49

4 Implementation of ScheduleME on PrivacyMate 51

4.1 ScheduleME Design: Goals . 51

4.2 ScheduleME Implementation: Group Computation 52

4.3 Related Work . 53

4.3.1 Factors used in comparison . 54

4.3.2 Comparison with ScheduleME . 54

4.4 Summary . 57

5 Implementation of MIT-FIT on PrivacyMate 59

5.1 MIT-FIT Design . 59

5.1.1 System Architecture . 60

5.1.2 Goals . 60

5.2 MIT-FIT Implementation . 61

5.2.1 Features . 61

5.3 Related Work . 62

5.3.1 Factors used in comparison . 62

5.3.2 Comparison with MIT-FIT . 63

5.4 Summary . 66

6 User Experience with PrivacyMate and MIT-FIT 67

6.1 Workflows of User Experience . 67

8

6.1.1 First time set-up (walkthrough) . 67

6.1.2 Subsequent setting update . 69

6.2 Access Control Enforcement for MIT-FIT 70

6.3 Usability Consultation and Semi-Structured Interviews 71

6.3.1 Semi-structured usability interviews 71

6.4 Summary . 74

7 Conclusion 75

7.1 Future Work . 75

8 Appendix 77

8.1 Requirements Gathering: Roundtable Questionnaire 77

9

10

List of Figures

1-1 Current access control models in mobile devices are “all-or-nothing”. Users

must give an app permission to access all the data requested or not avail

themselves of the service. 18

1-2 Permissions for data required to install the app “MIT Mobile” on an Android

phone. 19

1-3 Controls to specify sharing location with apps: Android 20

1-4 Controls to specify sharing location with apps: iOS 20

2-1 Technical infrastructure of the MIT Living Labs platform. 26

2-2 Proposed access control model using openPDS. It enables users to specify

what personal data can be accessed by specific labs. 27

2-3 Example of the interactions, storage and manipulation of users’ personal data

and exchange of processed data between personal PDS instances underlining

the privacy-by-design structure of the framework. [20] 30

3-1 Portion of the MIT Living Lab platform with PrivacyMate’s functionality

superimposed. 36

3-2 The user-controlled privacy mechanism provided by PrivacyMate in the Living

Lab platform. 37

3-3 Opt-in to data collection control. This screenshot lists the probes (along with

the purpose that the corresponding data would be used for) that a particular

lab needs. Also note the opt-in to data aggregation control (toggle switch). . 38

11

3-4 The context definition control. This context home screen shows the two pre-

defined contexts “MIT” and “Alltime-Everywhere.” Users can define new

contexts and edit existing ones. 38

3-5 Global listing of all the probes that Funf collects for the MIT Living Lab project 39

3-6 Temporal specifications of the context definition. 41

3-7 Spatial specifications of the context definition. 41

4-1 ScheduleME app created using openPDS: showing (a) the interface to request

a meeting; (b) the possible results of a group computation, explaining how the

actual personal location information is preserved and the computed answer is

shared among users’ PDS to maintain participants’ privacy. [20] 53

5-1 MIT-FIT system architecture. 61

5-2 Locations of high activity for the user. 62

5-3 Locations of high activity for all users. 62

5-4 Frequency of high activity times for the user. 63

5-5 Personalized recommendations of fitness-related events to users. 64

6-1 The context home screen showing the two pre-defined contexts “MIT” and

“Alltime-Everywhere” and the option to create new custom contexts. 68

6-2 Menu beside each of the labs listed on the Living Labs app. The menu options

currently are: about, settings, and credits. 69

6-3 High-activity locations for a user: Alltime-Everywhere context 70

6-4 High-activity locations for a user: Dorm context 70

6-5 Five-point Likert scale ratings for task 1 . 72

6-6 Five-point Likert scale ratings for task 2 . 72

6-7 Five-point Likert scale ratings for task 3 . 72

12

List of Tables

4.1 Commercial & research location-based apps, showing the visibility within each

app, whether real-time location tracking is possible, the privacy techniques

used to safeguard users’ location information, type of log in access (F. Face-

book, G. Google+, T. Twitter, FS. foursquare, O. Others), and the underlin-

ing structure of data storage / communication. [20] 55

5.1 Commercial & research quantified-self apps, showing the visibility within each

apps, the privacy techniques used to safeguard users’ location information,

and the type of log in access (F. Facebook, G. Google+, T. Twitter, FS.

Foursquare, P. Pinterest O. Others) . 65

8.1 Quantified-self apps, devices, etc . 79

13

14

Listings

3.1 MIT-FIT task and associated helper function 44

3.2 recentProbeDataScores task and associated helper function 45

3.3 Adding the recentProbeDataScores task to celery 46

3.4 MIT-FIT HTML for High-Activity Locations 46

3.5 MIT-FIT JavaScript for High-Activity Locations 46

3.6 Adding the visualizations location to the urls.py file 48

3.7 Adding the MIT-FIT lab to the mobile app 48

15

16

Chapter 1

Introduction

Smartphones and smart devices collect a vast array of sensor data. This data ranges from the

obvious (location, accelerometer, Bluetooth, and so on), to the more advanced, such as heart

rate. This chapter presents the shortcomings of the access control mechanisms commonly

available for such sensor data on smartphones. It explains the need for and describes a four-

pronged privacy mechanism for users’ personal data stores (PDS) that is user-controlled,

called PrivacyMate. PrivacyMate is developed within the MIT Living Lab project, led by

the MIT Bigdata@CSAIL initiative. The chapter concludes with an overview of the rest of

the thesis.

1.1 Motivation

The sensor data collected from smartphones can be used to infer health, social, and be-

havioral patterns of users. For example, research has shown that location information can

be used to discover different types of personal behaviors and details, such as activity pat-

terns [12] [17], profile behaviors [6], and likes and dislikes [18]. Though such data analyses

enable service providers to create personalized services for the user, they present some serious

risks to privacy.

Researchers have discovered that only four spatio-temporal data points are sufficient to

uniquely identify individuals in a set of de-identified data [5]. However, people are often

unaware of the nature and extent to which their information is collected and used since the

17

apps installed on smartphones can silently collect data and send it away from the phone even

when the device is idle [19]. Further, in most commercial location-based services, users do

not have the ability to control (modify, permanently delete, or limit the use of) their data as

these app and device providers collect data and store them on their own servers and could

potentially share them with third parties. Figure 1-1 shows the data collection, storage, and

retrieval model on most commercial mobile apps.

Figure 1-1: Current access control models in mobile devices are “all-or-nothing”. Users must give
an app permission to access all the data requested or not avail themselves of the service.

This business model conflicts with most people’s preferences. Published research indi-

cates that people generally want to control who can retain their personal sensor data [1].

Moreover, people want to control the granularity of the data that is being collected by apps

and device providers, which is not possible with commercial apps. As shown in Figure 1-2,

mobile apps provide users with “all-or-nothing” privacy controls during their installation for

data collection and use. Users have to either agree to share all the requested data or not

use the service. The premise of this thesis is that it is crucial to allow users to decide the

18

granularity of this data because the default fine-grained collection of their sensor information

could lead to privacy violations [8].

Figure 1-2: Permissions for data required to install the app “MIT Mobile” on an Android phone.

1.2 Related Work

This section describes related work from the aspect of other user-controlled privacy mecha-

nisms, specifically for mobile personal data.

A recent study [14] has found that the “all-or-nothing” access to applications does a

remarkably poor job of meeting the participants’ self-reported preferences. In fact, user pref-

erences are so intricate that even determining how much contextual factors can affect people’s

decisions about data disclosure is difficult [19]. Additionally, default profiles, although not

expressive, seem easy for users to understand and adapt to. However, participants in a

study [21] who used the default settings ended up sharing more of their location information

compared to other participants. Thus, the drawbacks of placing a cognitive burden on users

to create policies to protect their location data should be carefully considered.

19

Figure 1-3: Controls to specify sharing location
with apps: Android

Figure 1-4: Controls to specify sharing location
with apps: iOS

The iOS framework seems to have a little more flexibility than the Android platform in

this regard [10]. The iOS platform allows users to specifically turn off location sharing with

specific applications (as shown in Figure 1-4), unlike what is possible in Android (as shown

in Figure 1-3). Thus, even though the users may agree to the data collection initially during

installation of an app, they have the option to turn off sharing their location information

with that particular application later on. PrivacyMate aims to extend the model of iOS and

allow users to select or deselect various types of data (more than just location information)

from being collected by apps. Existing engineering efforts in this area include SensorSafe [2]

and Webinos [16].

Chakraborty et al. [2] provided a flexible user interface for fine-grained and context-

dependent access control and employ PDS-specific (e.g., Django) rule-based sharing mech-

anisms. For Web-based applications, Lyle et al [16] developed a XACML-based framework

that provides a single policy enforcement mechanism for a user’s “personal zone” – the de-

vices they own and use. Rather than expect users to create rules or policies, PrivacyMate

enables users to define permissions using visual controls via the the opt-in to data collection,

20

context definition, and opt-in to data aggregation settings provided for a given app. Specif-

ically, PrivacyMate focuses not only on what data is used, but also what data should be

stored in the user’s personal data store in the first place. Further, PrivacyMate does not

have to consider the notion of data sharing because it focuses solely on first use. In other

words, the code of any app resides wholly within a user’s PDS machine.

This thesis demonstrates how to build privacy-preserving location-based apps on the

openPDS platform [7]. openPDS is an alternate and decentralized platform that enables

users to store their mobile personal data (sensor, location, call logs, and other mobile infor-

mation) on their own machines or on trusted servers. Tools for privacy-preserving distributed

computing are not novel [4], and there are other decentralized privacy-preserving and open

architectures such as ipShield [3], πBox [15], Koi platform [11], and Open mHealth [9]. How-

ever, apps created using our approach have the ability to preserve users’ privacy by utilizing

the question and answer and group computation techniques of openPDS. These techniques

enable the apps to function without sharing users’ raw or fine-grained personal information

with other participants or the apps themselves. Yet, the problem with openPDS is that it

does not provide user-controllable privacy mechanisms (access control) in order for users to

specify their privacy preferences.

1.3 Contributions of this thesis

This thesis presents PrivacyMate, a suite of tools designed to provide user-controllable pri-

vacy mechanisms for mobile apps on personal data stores. Although PrivacyMate is currently

integrated into openPDS within the MIT Living Lab platform, it can potentially be built

on top of any decentralized architecture or even on mobile platforms (e.g., Android or iOS).

PrivacyMate aims to enable users to maintain better control over their mobile personal data.

Privacy preferences can be specified in PrivacyMate by creating temporal or spatial contexts

and indicating what data users are comfortable sharing with apps. This mechanism uses

“opt-in by choice” settings and spatio-temporal contexts.

The MIT Living Lab project aims to integrate and visualize data collected for and by

the MIT community. To achieve that, apps (known henceforth as “labs”) are built on the

21

Living Lab project in the MIT Mobile app. Using PrivacyMate, users can design and enforce

context-specific access controls for various labs in the Living Lab project.

We incorporate the privacy mechanisms offered by PrivacyMate into two labs built on

openPDS: ScheduleME (also called as “Meetup”) and MIT-FIT. ScheduleME is a privacy-

preserving alternative to the mainstream scheduling apps. It enables users to schedule meet-

ups without explicitly disclosing either their location(s) or their point(s) of interest. MIT-FIT

is a privacy-preserving alternative to the mainstream fitness apps. MIT-FIT appears to be

the first fitness app built on a privacy-preserving decentralized architecture that provides

visualizations based on quantified activities to enable behaviors that help users achieve their

fitness goals.

Note that PrivacyMate is part of the MIT Living Lab platform. Thus, it does not have

to be included as a library within each newly created lab. When developers build a new

lab, PrivacyMate’s functionality would automatically be included in their lab. Chapter 3

shows the procedure to create a new lab on the MIT Living Lab platform. MIT-FIT and

PrivacyMate have been beta-tested and will be launched in an upcoming release to the MIT

campus.

1.4 Thesis Overview

The rest of this thesis is structured as follows.

• Chapter 2 describes the existing infrastructures that PrivacyMate, ScheduleME,

and MIT-FIT build upon. Specifically, it discusses openPDS, MIT Mobile app, and

DataHub, which are part of the MIT Living Lab platform.

• Chapter 3 describes the design decisions and technical implementation of Privacy-

Mate. A tutorial is provided that shows how to build new labs on top of openPDS and

PrivacyMate.

• Chapter 4 describes building ScheduleME as a sample lab on openPDS and Privacy-

Mate. ScheduleME aims to enable users to schedule meetups without explicitly sharing

either location information or points of interest.

22

• Chapter 5 describes building MIT-FIT as a sample lab on openPDS and PrivacyMate.

MIT-FIT aims to provide high-activity details by time and location to create awareness

in the users. It also recommends fitness-related activities (as advertised by MIT’s

recreation-promoting center) based on the user’s activity patterns.

• Chapter 6 demonstrates how PrivacyMate and MIT-FIT work together by describing

the workflows that users would go through and the functionality of MIT-FIT with and

without PrivacyMate. It also discusses the usability and accessibility testing conducted

by the Usability team of the IS&T Department at MIT.

• Chapter 6 concludes the thesis and discusses future work.

23

24

Chapter 2

Existing Infrastructure

Since this work was developed as part of the MIT Living Lab project, it is imperative to first

consider the already existing infrastructure of the project. This chapter outlines its technical

infrastructure, with an emphasis on the openPDS platform. Other infrastructures that were

inspirations for portions of this work are also described. Finally, the chapter describes a

roundtable discussion that we conducted among a sampling of the MIT community to better

understand the requirements for Quantified-Self apps and devices.

2.1 MIT Living Lab Architecture

The MIT Living Lab project was started by the bigdata@CSAIL initiative and provides the

ability to access, visualize, share, and use the data generated by and for the MIT community.

The goal is to allow MIT itself to become more data-driven.

The MIT Living Lab project is built on the following components: (i) openPDS (server

acting as a personal data store), (ii) DataHub (backend repository for the personal data), and

(iii) Android/iOS (mobile clients). Figure 2-1 shows the architecture diagram of the Living

Lab project and the stack of various technologies used in building it. These component

platforms are then explained.

25

Figure 2-1: Technical infrastructure of the MIT Living Labs platform.

2.1.1 openPDS

openPDS is an open-source platform that enables users to store their personal sensor data

on their own machines or on trusted servers. This creates a decentralized data storage and

processing solution for mobile personal data. Unlike the access control model shown in

chapter 1, the data collection, storage, and retrieval model on openPDS (shown in Figure 2-

2) enables users to be the actual collectors of their own data and gives them the option to

share their data with apps for use. This decentralized approach is quite opposite to the

centralized, rigid approach that makes the app providers the data collecting agents. Under

this new framework, users would not have to disclose their raw data to third parties or to

app providers. In this way, openPDS preserves the privacy of users’ private data.

Technically, openPDS is a Django-based webserver that provides (i) data connectors to

store, fetch, and query the personal data; (ii) views to interact with the mobile clients and

devices; and (iii) templates to render visualizations after processing the computations (func-

tionalities) of various labs. The source code is hosted on GitHub1 and is written primarily

in scripting (Python) and Web-based (HTML, D3.js, backbone MVC framework, and CSS)

1https://github.com/HumanDynamics/openPDS

26

languages.

Figure 2-2: Proposed access control model using openPDS. It enables users to specify what personal
data can be accessed by specific labs.

2.1.2 MIT Mobile App

The MIT mobile app was developed by the MIT IS&T Department2 for both the Android

and iOS platforms. The code for the Android platform has been modified to specifically

integrate the MIT Living Lab project. This version of the mobile app has already been

populated with the following labs: Social Health Tracker, My Places, and ScheduleME (also

called Meetup). The goals of these labs are as follows:

• Social Health Tracker aims to provide sociometric analyses of people’s behavior (“social

health”) along the activity, social, and focus axes.

2https://ist.mit.edu/

27

• My Places aims to identify the “work” and “home” locations of people by analyzing

where they spend most of their waking and sleeping hours.

• ScheduleME aims to enable people to schedule meetups without revealing either their

locations or their points of interest.

Technically, the MIT Mobile Living Labs app is an open-source Android client. The

source code is hosted on GitHub3 and is written primarily in Java. It incorporates the Funf

library4 which is another open-source platform that provides the MIT Mobile Living Lab app

with a background service to collect sensor and other mobile information from the device.

The MIT Mobile Living Lab app also incorporates the Google Play Service5 and the Android

ActionBar Sherlock library6 to provide a better user experience.

2.1.3 DataHub

DataHub is an open-source platform that aims to provide a user-friendly interface through

which users can interact with their databases. It provides a GitHub-like versioning control

for the backend schemas and data. Technically, DataHub provides Web and command-line

interfaces to PostgreSQL (relational) databases. The source code is hosted on GitHub7 and

is primarily written in Python and JavaScript.

2.2 A Closer Look at openPDS

PrivacyMate and MIT-FIT leverage the openPDS platform to incorporate their various fea-

tures. Therefore, it would be helpful to have a closer look at the design of openPDS, with

a particular emphasis on its privacy-preserving characteristics. openPDS comprises the fol-

lowing two privacy-preserving mechanisms: “Question and Answer Framework” and “Group

Computation.”

3https://github.com/HumanDynamics/MIT-Mobile-for-Android
4http://www.funf.org/
5http://developer.android.com/google/play-services/index.html
6http://actionbarsherlock.com/
7https://github.com/abhardwaj/datahub

28

2.2.1 Question and Answer Framework

As mentioned previously, openPDS users do not have to disclose their raw mobile personal

data to app providers or third parties. This is accomplished through the question and answer

framework of openPDS. One of the requirements set by openPDS is that any lab hosted on

it should have all the necessary code residing on the computing space of the user’s PDS ma-

chine. In other words, a lab cannot send a user’s raw data to an external location for further

processing or for providing results of computations. Within the scope of this limited process-

ing, openPDS consists of two APIs (Application Programming Interfaces) for data access –

an internal API and an external API. The internal API grants purpose-based authenticated

access (using OAuth8) to the labs residing on openPDS. This authentication prevents the

labs from directly accessing a user’s raw mobile personal data and from sending the data

outside the PDS machine. Instead, a lab can ask “questions” of a user’s PDS instance such

as “Where was the user location at 10am in the last two weeks?” or “What is the activity

level of the user when present at (42.3617434,-71.0906687)?” Though these sample questions

were provided in English, the actual questions asked by the labs are scheduled as tasks and

written as Python code. A user’s PDS instance would then access his or her raw mobile

personal data and compute the “answers” to those questions. The external API grants the

lab an authenticated access (again, using OAuth) to the answers computed by openPDS.

Thus, the labs never directly see, share, or use the users’ raw mobile personal data. They can

only access the processed results that answer questions they seek to understand or analyze

for the user.

2.2.2 Group Computation

When labs ask “questions” of a user’s PDS instance, openPDS processes the raw data of

the corresponding user. However, for “questions” involving data from a segment of (or all)

users, openPDS has to query the respective PDS instances to compute an answer. This pro-

cess is called group computation and enables labs to provide group or aggregation analyses.

Figure 2-3 shows a walkthrough of the interactions and control flows involved in the group

8http://oauth.net/

29

computation process.

The openPDS ecosystem consists of a “ring” of PDS instances and a registry server.

The registry server keeps track of the authentication and instance details of the openPDS

users. Processing starts at an initiator’s PDS instance. The initiator can be either pur-

posely or randomly chosen by the lab. The intermediate contribution (running total) is

then transmitted from that PDS instance to the next one in the ring of PDS instances for

further processing. This process continues (Figure 2-3 [steps 5(a), 5(b) and 5(c)]) and once

all the instances finish processing over the incoming intermediate results, the final “answer”

is obtained. The initiator’s PDS instance then broadcasts the result to those of the other

participants (Figure 2-3 [step 6]). Finally, the PDS instances would notify the users of the

results (Figure 2-3 [steps 7]).

open PDS

open PDS

open PDS

Participant 1
Initiator

Participant 2

1 (*). A Request is send from the Initiator.
2 (**). The request is stored in the Initiator openPDS.
3 (*). The participants can accept or decline the request.
4 (**). The received request is stored in the participants
openPDS.

1 1
3 3

2
4 4

5(b)

6 67 7

7

(*) Interface level intera-
ctions, which will be need
to be tailored to the apps
speci�c requirements.

(**) Storage, manipu-
lation of users’ personal
data and exchange of
proccessed data computed
to preserve privacy.

5 (a-c)(**). The computations are run and the result is send
 between the initiator and participants’ openPDS.
6(**). The initiator’s openPDS send the resuls to
 participants’ openPDS.
7(**). The openPDS(s) send initiator and participants
 the result.

5(a) 5(c)

Figure 2-3: Example of the interactions, storage and manipulation of users’ personal data and
exchange of processed data between personal PDS instances underlining the privacy-by-design struc-
ture of the framework. [20]

2.3 What’s Missing?

The infrastructures described in the previous three sections are extensive, but currently lack

the following functionalities and capabilities:

30

• The MIT Living Lab project currently does not include user-controllable privacy mech-

anisms.

• The MIT Mobile Living Labs app currently lacks a quantified-self lab that could pro-

mote active and healthy living within the MIT community.

2.4 Requirements Gathering

We conducted a requirements gathering study (roundtable discussion) to better understand

the experiences of a sampling of MIT affiliates with Quantified-Self apps and devices. We

used the takeaways as part of our requirements-gathering in the design of the MIT-FIT lab.

2.4.1 Procedure

We had a one-hour-long roundtable discussion led by a facilitator. The participants were

asked whether they used quantified-self apps or devices previously. If they had, they were

then asked to share their experiences. If they had not, they were asked for their reasons.

Based on their replies, follow-on questions were asked. The questionnaire followed during

the roundtable discussion is listed in Appendix 8.1. This was a casual gathering and we

received very candid responses.

2.4.2 Participants

We primarily focused on recruiting students for the roundtable discussion, but allowed non-

students to participate as well. Some of the participants were initially recruited from the

bigdata@csail student mailing list. The MIT Department of Athletics, Physical Education &

Recreation (DAPER)9 had asked participants in its annual survey to indicate whether they

would like to be contacted for a research study. Thus, later in our recruiting process, we

contacted those who opted in via the DAPER survey. Overall, we had nine participants in

the roundtable discussion (7 students – both graduate and undergraduate students, 1 MIT

affiliate, and 1 staff).

9http://web.mit.edu/athletics/www/

31

2.4.3 Takeaways

Following are the major takeaways from the roundtable discussion.

• Participants who were students seemed generally comfortable sharing data with MIT.

In contrast, the staff member was not comfortable doing so and raised concerns related

to legal and insurance issues. We construe this as a validation for the “opt-in to data

collection” setting.

• Regarding privacy settings for data collection and use, one student said that they

would “want to turn it on”, instead of “actively turning it off.” We construe this as a

validation for our “opt-in by choice” settings.

• The privacy model in Foursquare was preferred by a participant. In that model, only

friends that you choose to share your location with know where you are (and only when

you share). Others are not aware of your location at any time.

• Some of the participants stated that displaying the purpose of use of data collected

was important to them. The reason given was that the users do not know what the

app providers would be doing with the data they collect from the users.

• One participant stated that, at a minimum, apps should turn off sharing their data

passively with others and should not post their data to social networking sites like

Facebook automatically.

• Monitoring sleep was important for some of the participants. One participant men-

tioned having friendly competitions with labmates over their “sleep efficiency.”

• Leaderboards that listed individuals did not seem interesting to the participants. They

seemed to prefer competing in groups (as part of their dorms or housing) against other

such groups.

• Regarding analyses, daily check-ins or updates seemed to be an overload. Participants

seemed to prefer weekly or monthly check-ins in the form of push notifications.

32

• A few participants considered negative reinforcements to be more effective than positive

ones. Some examples given were: collecting money at the outset and then donating it

(or a portion of it) to a political cause that a user opposes or to the other participants

of the app, if that user does not meet his or her goal.

2.5 Summary

This chapter has discussed the existing infrastructure in the MIT Living Lab project and

highlighted what is missing. It also discussed the roundtable discussion held to better un-

derstand the requirements for a quantified-self app for the MIT Living Lab project.

33

34

Chapter 3

PrivacyMate: User-Controllable

Privacy Mechanisms for Living Labs

PrivacyMate is not a standalone system, but rather is a suite of tools that provides user-

controllable privacy mechanisms for the MIT Living Labs project. This chapter provides the

technical details of PrivacyMate. It starts with the functional architecture of PrivacyMate

and then discusses the design decisions and implementation details of the privacy mechanism.

3.1 Functional Architecture of PrivacyMate

Figure 3-1 shows the functional architecture of a portion of the MIT Living Lab project

relevant to this thesis. The data and control flows between the client (Android device with

the Funf service) and the openPDS server are shown along with those between the openPDS

server and the labs residing on the server. PrivacyMate enhances the current functionality of

the MIT Living Lab project by providing user-controllable privacy mechanisms. Users can

create preferences (consisting of settings and context) to specify what data they would like to

collect and contribute to a specific lab, and also the contexts in which they are comfortable

with the data being used. These settings are sent to openPDS along with the data collected

by Funf. Further, when labs ask openPDS “questions” about a particular user’s data and

receive a processed “answer,” the corresponding processing takes the user preferences into

consideration, thereby enforcing those preferences.

35

Figure 3-1: Portion of the MIT Living Lab platform with PrivacyMate’s functionality superim-
posed.

3.2 PrivacyMate’s Privacy Mechanism

When it comes to user-controllable privacy mechanisms, two issues need to be considered:

What controls are displayed? and What concerns and functions do those controls address?

This section aims to answer these two questions, starting with the second one, for the suite

of tools provided via PrivacyMate.

For personal data stores, the major privacy concerns are data collection, data aggre-

gation, and data use and these constitute the functions targeted by the proposed controls.

Data collection refers to the collection of the mobile personal data (sensor and other mobile

data via Funf, or even external data via third-party webservices or APIs). Data aggregation

refers to the processing of a user’s data in the context of or in conjunction with the data

of other users. In other words, this refers to the notion of group computation described in

Chapter 2. Data use refers to the individual processing of a user’s data (not along with the

data of other users). The most straightforward processing of an individual’s data is for data

use and the privacy concern there is not so much about the data itself, but rather about

36

the metadata of the data under consideration – in other words, the context of the collected

data under which a user would feel comfortable having the lab use his or her data. Since

openPDS inherently does not allow sharing of the raw data with either the app providers or

third parties, we do not consider the notion of data sharing.

Figure 3-2: The user-controlled privacy mechanism provided by PrivacyMate in the Living Lab
platform.

To address the privacy concerns just mentioned, PrivacyMate offers the following three

controls: opt-in to data collection, context definition, and opt-in to data aggregation. These

three controls constitute the access control (preferences) provided by PrivacyMate. As Fig-

ure 3-2 shows, the preferences, along with their enforcement, form the four-pronged privacy

mechanism offered by PrivacyMate. The access control (preferences) enables users to make

an informed decision about what data they are willing to let specific labs collect, access, and

use. PrivacyMate provides default settings to help users get set up quickly. Users who prefer

to create custom controls can do so using the full range of the features offered by Privacy-

Mate. These four-pronged privacy mechanisms are briefly introduced below and explained

in further detail in the following sub-sections.

37

1. Opt-in to data collection: controls to specify what data a user would like to be

collected or used by a specific lab.

2. Opt-in to data aggregation: controls to specify whether a user is interested in

sharing his or her data to be used in the group computations performed by a specific

lab.

3. Context definition: controls to specify the spatio-temporal context (metadata)

within which a user is comfortable having a specific lab use his or her data.

4. Preference enforcement: enforcement of the user-defined preferences by the PDS

instance.

Example. Figures 3-3 and 3-4 show the preferences created by a sample user. Ac-

cording to these preferences, the user has chosen to have both activity and location data

collected and used by the MIT-FIT lab. Usage is indicated to be limited to the temporal

and spatial specifications of the MIT context (pre-defined, but editable by the user).

Figure 3-3: Opt-in to data collection control.
This screenshot lists the probes (along with the
purpose that the corresponding data would be used
for) that a particular lab needs. Also note the opt-
in to data aggregation control (toggle switch).

Figure 3-4: The context definition con-
trol. This context home screen shows the
two pre-defined contexts “MIT” and “Alltime-
Everywhere.” Users can define new contexts and
edit existing ones.

38

3.2.1 Opt-in to Data Collection

These controls inform users about the data (location and other sensor data) that are required

by a particular lab along with their purpose of use. For instance, Figure 3-3 shows that the

MIT-FIT lab requires the activity and simple location data to function. These preferences

for data collection and use are stored both locally (in the SQLite database on the device, for

data collection) and remotely (on the openPDS server, for enforcement). To make it easy for

the users, we also provide an option for users to select the data globally for all labs using the

Global Settings (as shown in Figure 3-5). These settings enable users to turn data collection

on or off for all the probes as well as being able to selectively turn on only data that are

required by the labs installed on that user’s PDS instance.

Figure 3-5: Global listing of all the probes that Funf collects for the MIT Living Lab project

Since global settings apply to all labs installed on a user’s PDS instance, the switches

on this screen are “read-only.” We provide the nuclear options of de-selecting and selecting

all data for data collection from the device. However, from a privacy standpoint, it might

make sense to only collect data if there is at least one lab installed on the user’s PDS that

requires that data. Thus, the option of selecting only required data is also provided.

39

Data is collected from various sensors on the device using the Funf library. Internally,

Funf constructs a “pipeline” that specifies the schedule of data collection and the probes from

which data is permitted to be collected on that schedule. This pipeline is invoked by the Funf

manager, which runs continuously as a background service (broadcast launcher/receiver) on

the device. PrivacyMate computes the union of the probes permitted by the user across all

labs to determine the new list of probes for data collection. This new list is passed as a

modified pipeline to the Funf manager so that only the data explicitly selected by the user

are collected.

3.2.2 Opt-in to Data Aggregation

Figure 3-3 also shows the opt-in to data aggregation control. Using this control, users can

specify whether they would like to allow labs to use their data for group computations. When

users select this option, their PDS instance would include their data in group computations

and pass the intermediate results along to others in the ring of PDS instances.

3.2.3 Context Definition

Context refers to spatio-temporal constraints (metadata) specified by users that govern what

data they would like the lab to use. These are specified on the client device, but stored on

the openPDS server. To simplify the process of defining contexts, PrivacyMate provides

two pre-defined contexts by default: MIT and Alltime-Everywhere as shown in Figure 3-4.

That screenshot is the context “home screen” that lists the pre-defined and user-defined

contexts available for use. As their names may suggest, the MIT context defines the MIT

campus as its spatial constraint and 10am through 6pm on weekdays (working hours) as its

temporal constraints. The Alltime-Everywhere context, on the other hand, does not specify

any location and selects all the times (24X7) as its temporal constraints. As seen in Figure 3-

4, users also have the option to create new contexts or edit both the pre-defined as well as

the user-defined contexts. Figures 3-6 and 3-7 show how to specify the temporal and spatial

constraints for the pre-defined “MIT” context. The context editing screens for user-defined

contexts provide users an additional option to delete that context. As indicated by the radio

40

buttons in Figure 3-4, only one context may be associated with any given lab.

Locations specified in the spatial specification of a context may potentially be more

sensitive than the sensor data collected, and can raise concerns like “why does this user

consider non-indicated (other) locations to be sensitive?” Thus, PrivacyMate does not share

the locations specified in the contexts with the labs. The internal API uses the context as a

filter to determine whether the lab is allowed to access a specific data object.

Figure 3-6: Temporal specifications of the con-
text definition.

Figure 3-7: Spatial specifications of the context
definition.

3.2.4 Preference Enforcement

When a lab requests openPDS to answer a “question,” openPDS collects the necessary data

using the internal API and determines whether the lab is allowed to access each data object.

Using the preferences created by the user, openPDS accomplishes the preference enforcement

as follows.

1. Opt-in to data collection: if a lab requests a particular type of data (such as, Wi-

Fi), but the user did not enable its collection, the PDS instance returns a None object

41

to the lab. If that type of data is available on the user’s PDS, the context associated

with this lab is investigated next.

2. Context definition: the PDS instance checks the temporal and spatial specifications

of the context associated with the lab under consideration as follows:

• Temporal specifications: the timestamp associated with a particular data ob-

ject (e.g., call log or Bluetooth data) is checked to determine whether the time

of collection of that data object lies within the start and end times specified in

the context associated with the lab. Further, the day of the week of the time-

stamp of the data is also compared with the days selected in the corresponding

context to determine permissibility. If these two conditions are met, the temporal

specification of the context is deemed to be satisfied.

• Spatial specifications: If no location is specified in the context associated with

a lab (as in the “Alltime-Everywhere” context), the lab is allowed to access any

data specified by the opt-in to data collection control that satisfy the temporal

constraints of that context. Otherwise, the location data at the timestamp cor-

responding to a specific data object is retrieved. This location is checked to see

whether it (the latitude/longitude coordinate pair) lies within a 500-meter radius

of any of the location(s) specified in the corresponding context. If the latitude/-

longitude pair satisfies this condition, the spatial specification of the context is

deemed to be satisfied. The distance computation between two latitude/longitude

coordinates needs to consider the spherical shape of the Earth. Thus, PrivacyMate

employs the Haversine formula to compute the distance between the location as-

sociated with a particular timestamp (at which a data object was collected) and

the location specified in the context definition. Using the Haversine formulation,

and considering the radius of the Earth (r) to be 6372.8 Km, the distance between

two points (φ1, λ1) and (φ2, λ2), is

d = 2r arcsin

(√
sin2

(
φ2 − φ1

2

)
+ cos(φ1) cos(φ2) sin2

(
λ2 − λ1

2

))

42

If a data object satisfies both the temporal and spatial specifications of the context

associated with a lab, that lab is granted access to that data object and the PDS

instance of that user can use that data object when computing the “answer” for the

“question.” Since location data is required to perform these checks for the spatial

constraints, we treat the location probe as a special data probe and always turn it on

for data collection. If the opt-in to data collection control for a user indicates that the

user does not want location data to be used by a particular lab, the corresponding lab

will not have access to the location data via openPDS. However, openPDS will still

perform the spatial checks mentioned previously for the other data that are allowed by

the user for that lab.

3. Opt-in to data aggregation: if a user does not select the opt-in to data aggregation

control, openPDS would not use that user’s data for group computations. However,

the data permitted by the checks for context definition and opt-in to data collection

controls would still be used for individual use (e.g., to render visualizations of the user’s

data back to the user).

3.3 Tutorial: How to build a new lab on openPDS and

PrivacyMate

To create a new lab, a developer needs to make changes to the MIT mobile app and openPDS

server. PrivacyMate’s functionality is part of the framework and therefore a developer does

not have to build additional code to integrate his or her code. This section discusses the

steps needed to develop a lab and presents brief code snippets. A fully-fleshed walkthrough

to develop a sample lab is hosted on the openPDS repository wiki on GitHub1.

3.3.1 On the openPDS server

The processing and visualizations of the lab have to be built on the openPDS server. The

following four steps describe this procedure.

1https://github.com/HumanDynamics/openPDS/wiki/Tutorial:-Creating-a-new-lab

43

Step 1 Create a Python task in a file called yourlabname tasks.py (replace “yourlab-

name” with the name of your lab) in the oms pds directory. Tasks typically consume either

raw or processed data using the internal API and produce processed data for the lab’s visu-

alizations (consumed via the external API). The code snippet for the MIT-FIT lab’s find-

ActiveLocations task is provided in Listing 3.1. The dependent task, recentProbeDataScores

is shown in Listing 3.2 and provides data that findActiveLocations uses internally.

Listing 3.1: MIT-FIT task and associated helper function

def act iveLocat ionsComputat ion (in t e rna lDataSto r e) :

a c t i v i tyAnswerL i s t = inte rna lDataSto r e . getAnswerList (”

recentActivityProbeByHour ”)

compute the r e s u l t us ing your l o g i c

return l o c a t i o n P o i n t s

@task ()

def f indAct iveLocat ionsTask () :

p r o f i l e s = P r o f i l e . o b j e c t s . a l l ()

for p r o f i l e in p r o f i l e s :

prov ide user p r o f i l e , app name , l a b name , and token

i n t e rna lDataSto r e = get In te rna lDataSto r e (p r o f i l e , ” Liv ing

Lab” , ”MIT−FIT” , ””)

use the v a l u e s re turned from the h e l p e r f u n c t i o n

va lues = act iveLocat ionsComputat ion (in t e rna lDataSto r e)

compute l o c a t i o n f r e q u e n c i e s us ing your l o g i c

for key in l o c a t i o n f r e q u e n c i e s :

l o c a t i o n v a l u e = { ” l a t ” : key [0] , ” lng ” : key [1] , ” count ” :

l o c a t i o n f r e q u e n c i e s [key]}

l o c a t i o n f r e q u e n c i e s l i s t . append (l o c a t i o n v a l u e)

for p r o f i l e in p r o f i l e s :

44

i n t e rna lDataSto r e = get In te rna lDataSto r e (p r o f i l e , ” Liv ing

Lab” , ”MIT−FIT” , ””)

sav ing the processed answers to the database

i n t e rna lDataSto r e . saveAnswer (” a c t i v e Lo ca t i on s ” ,

l o c a t i o n f r e q u e n c i e s l i s t)

Listing 3.2: recentProbeDataScores task and associated helper function

def probeForTimeRange (probe , inte rna lDataStore , s t a r t , end . . .) :

p robeEntr i e s = inte rna lDataSto r e . getData (probe , s t a r t , end)

compute processed r e s u l t s us ing your l o g i c

i f probe == ’ LocationProbe ’ :

l o c a t i o n = { ” s t a r t ” : s t a r t , ”end” : end , ” c en t r o i d ” :

c e n t r o i d s }

return l o c a t i o n

e l i f probe == ” Act iv i tyProbe ” :

a c t i v i t y = { ” s t a r t ” : s t a r t , ”end” : end , . . . , ” high ” :

h i g h A c t i v i t y I n t e r v a l s }

return a c t i v i t y

return None

@task ()

def recentProbeDataScores () :

p r o f i l e s = P r o f i l e . o b j e c t s . a l l ()

perform the t a s k f o r a l l u ser s

for p r o f i l e in p r o f i l e s :

prov ide user p r o f i l e , app name , l a b name , and token

i n t e rna lDataSto r e = get In te rna lDataSto r e (p r o f i l e , ” Liv ing

Lab” , ”MIT−FIT” , ””)

use the v a l u e s re turned from probeForTimeRange

45

Step 2 Add the task file to the celery scheduler in the oms pds directory along with

a schedule of when to run the tasks. Listing 3.3 demonstrates how to run the recentProbe-

DataScores task twice every hour at the 8 and 38 minute marks.

Listing 3.3: Adding the recentProbeDataScores task to celery

”probe−summaries” : {

” task ” : ”oms pds . p r o b e d a t a v i s u a l i z a t i o n t a s k s .

recentProbeDataScores ” ,

” schedu le ” : crontab (hour=”∗” , minute=” 8 ,38 ”)

} ,

Step 3 Create the visualization UI using HTML, CSS, and JavaScript on top of the back-

bone.js MVC platform. Create the HTML templates in the oms pds/templates/visualizations

directory. Create the JavaScript files in the oms pds/static/js directory. Use backbone.js to

process the model and provide data to the JavaScript variables to render or manipulate.

Listing 3.4 shows the HTML snippet, while Listing 3.5 shows the outline of the JavaScript

snippet needed to create the visualization.

Listing 3.4: MIT-FIT HTML for High-Activity Locations

< !−− Extend backbone l a y o u t and add script f i l e s −−>

<script>

$ (func t i on () {

// c a l l i n g the AnswerListMap JavaScr ipt func t i on

window . answerListMap = new AnswerListMap (”

recentSimpleLocationProbeByHour ” , ”

recentActivityProbeByHour ” , ” answerListMapContainer ” , true ,

” user ”) ;

}) ;

</ script>

<div id=” answerListMapContainer ”></div> < !−− div for r e s u l t −−>

46

Listing 3.5: MIT-FIT JavaScript for High-Activity Locations

window . AnswerListMap = Backbone . View . extend ({

e l : ”#answerListMapContainer ” ,

i n i t i a l i z e : f unc t i on (locationAnswerKey , activityAnswerKey ,

mapContainerId , autoResize , e n t i t y) {

. b indAl l (th i s , ” render ” , ” r enderP lace s ”) ;

t h i s . render () ;

t h i s . l o ca t i onAnswerL i s t s = new AnswerL i s tCo l l e c t i on ([] , { ”

key” : locationAnswerKey }) ;

t h i s . l o ca t i onAnswerL i s t s . bind (” r e s e t ” , t h i s . r enderP lace s) ;

t h i s . l o ca t i onAnswerL i s t s . f e t c h () ;

// r e p e a t p r e v i o u s 3 l i n e s f o r act iv i tyAnswerKey

} ,

r ender : f unc t i on () {

// render to answerListMapContainer d i v

t h i s .map = new goog l e . maps .Map(document . getElementById (”

answerListMapContainer ”) , myOptions) ;

} ,

r enderP lace s : f unc t i on () {

var l o c a t i o n E n t r i e s = (t h i s . l o ca t i onAnswerL i s t s && t h i s .

l o ca t i onAnswerL i s t s . l ength > 0) ? t h i s .

l o ca t i onAnswerL i s t s . at (0) . get (” value ”) : [] ;

// proces s l o c a t i o n E n t r i e s and c r e a t e v i s u a l i z a t i o n

} ,

}) ;

47

Step 4 Add the path to the HTML visualizations to a oms pds/visualization/urls.py

file on the server. This enables Django to locate the visualizations for rendering. Listing 3.6

shows how to add the mitfit user location page to the urls.py file.

Listing 3.6: Adding the visualizations location to the urls.py file

u r l p a t t e r n s = pat t e rns (’ oms pds . v i s u a l i z a t i o n . views ’ ,

(r ’ ˆ m i t f i t / u s e r l o c a t i o n $ ’ , d i r e c t t o t e m p l a t e , { ’ template

’ : ’ v i s u a l i z a t i o n / m i t f i t u s e r l o c a t i o n . html ’ }) ,

)

3.3.2 On the MIT Mobile Living Lab App client

The mobile client has to be updated to allow users to view the newly-created lab in the MIT

Living Lab app.

Step 1 Add the lab to the pds strings.xml file. The following parameters of the lab

should be added: lab name, data requirements, and URL (matching the path specified in

the urls.py file in step 4 in the previous sub-section). Listing 3.7 shows how to add the

“High-Activity by Location” page to the pds strings.xml file.

Listing 3.7: Adding the MIT-FIT lab to the mobile app

{

’name ’ : ’MIT−FIT ’ ,

’ v i s u a l i z a t i o n s ’ : [

{ ’ t i t l e ’ : ’ High−a c t i v i t y Locat ions ’ , ’ key ’ : ’

m i t f i t / u s e r l o c a t i o n ’ , ’ answers ’ : [’

a c t i v e Lo ca t i on s ’] } ,

] ,

}

48

3.4 Summary

This chapter has described the four-pronged privacy mechanism offered by PrivacyMate.

Note that these privacy mechanisms are not included as libraries. Instead, these four mech-

anisms are integrated as part of the MIT Living Lab platform and available to any lab

(including those that may be built in the future).

49

50

Chapter 4

Implementation of ScheduleME on

PrivacyMate

This chapter presents the ScheduleME lab that was implemented in collaboration with other

researchers [20]. Through this lab, we demonstrate how to build privacy-preserving labs

that perform group computations on the MIT Living Labs project. ScheduleME uses mobile

and sensor data for performing group computations in privacy-preserving ways. ScheduleME

differs from other scheduling apps by not forcing users to reveal either their current or desired

physical locations or inexact points of interest.

This chapter discusses the design decisions and technical details of the ScheduleME lab

as well as a comparison of ScheduleME with other commercial and research-based schedul-

ing apps. We discuss how users can achieve privacy assurances on ScheduleME without

sacrificing the desired utility obtained in other apps.

4.1 ScheduleME Design: Goals

The goal of ScheduleME is to provide a privacy-preserving way to enable users to schedule

meetups without revealing either their current or desired physical locations (latitude/longi-

tude coordinates) or their inexact points of interest (such as landmarks).

51

4.2 ScheduleME Implementation: Group Computa-

tion

The user interface of ScheduleME is shown in Figure 4-1. A user who wants to schedule

a meetup is called an “initiator.” An initiator starts the workflow by selecting the people

to invite. This is accomplished by entering email addresses of those people (Figure 4-1(a)).

All users on openPDS are authenticated by the registry server using their MIT Kerberos

ID1 and thus openPDS knows their MIT email addresses. The invited people can either

approve, deny, or delete the request. All who approve the incoming request are considered as

“participants” in this workflow. Once openPDS receives notification from all invited people,

the initiator’s PDS instance randomly selects a location for each hour of the day from the

bounding box of locations computed based on his or her location history, as collected via

Funf. This suggested location is relayed to the neighboring PDS instance in the ring of PDS

instances (maintained by the initiator’s PDS instance and obtained from the registry server).

The neighboring PDS instance then determines the centroid between the incoming suggested

location and its own random location suggested from the bounding box for that hour of the

day (Figure 4-1(b)). The neighboring PDS also determines the distance from the centroid

to its own suggested location and adds this to a running tally of distances for each hour of

the day. The neighboring PDS instance then sends the newly computed centroid and the

running distance score for each hour to the next PDS instance in the ring. Once all the PDS

instances in the ring (consisting of the PDS instances of users who have both opted in using

the opt-in to data aggregation and have accepted the invitation for the meetup) have finished

processing, the result reaches the initiator’s PDS instance. The initiator selects the centroid

with the lowest distance score as the meetup location. Because this workflow requires the

PDS instances to pass a centroid as an intermediate result, a participant does not have to

reveal his or her historical or current location or points of interest.

1https://ist.mit.edu/start/kerberos

52

Meeting about PST paper
From: user1@mail.com
With: user2 (user2@mail.com); user3(user3@mail.com)
Day: Thursday 30th March;
Time: 16:00 pm
Location: 42.3612, -71.0893

The Initiator requests a meeting by simply
inserting participants emails addresses.
The system uses past information about partici-
pants’ locations to suggest a possible meet date,
time and place.

The maps shows the location which is most
convenient for the group, either as a total or a
majority of the participants. In order to preserve
participants’ privacy, the individual participants’
locations used to select the meeting place can
not be inferred. Participants‘ possible locations
for a meeting is selected randomly from within a
bounding box created by the 4/5 location places
captured (b1, b2) at the specific hour. Specific
past location information () is not used, a random
location () is selected within the limits of
a bounding box containing the actual past location.
This selected location is used in the computation
of the centroid ().

Initiator Participants(b1)
(b2)

(a) Requesting for a meeting

(b) Calculating the centroid

Figure 4-1: ScheduleME app created using openPDS: showing (a) the interface to request a meet-
ing; (b) the possible results of a group computation, explaining how the actual personal location
information is preserved and the computed answer is shared among users’ PDS to maintain partic-
ipants’ privacy. [20]

4.3 Related Work

This section discusses how ScheduleME differs from commercial and research-based schedul-

ing apps.

53

4.3.1 Factors used in comparison

We focus on the following five factors for comparing ScheduleME with the other apps:

• Visibility: who can view a user’s location and with whom users can share their

location;

• Real-time location tracking: whether the app allows users’ locations to be tracked

in real time;

• Privacy techniques: privacy-preserving mechanisms provided by the app;

• Log-in access: whether an app requires users to create a new account or allows them

to use their existing social network profiles;

• Framework structure: whether the app’s framework is centralized or decentralized.

4.3.2 Comparison with ScheduleME

Table 4.1 lists the apps (both commercial as well as research-based) that provide location-

based services. Blendr 2 and Skout3 allow serendipitous discovery of people by recommending

people based on a user’s proximity to them, thereby allowing strangers to view a user’s

inexact locations. Glympse4, Owntracks5 and Miataru - be found6 allow users to share their

location information with other users. Waze7 and GPS Plus8 provide crowd-sourced and

personal traffic navigation, respectively. Glympse, Waze, and GPS Plus enable users to share

their location information with others for a user-specified amount of time. After the time

expires, the contacts would no longer be able to view that user’s location. Tag - You’re

It9 and PrivateMeetUp [13] provide a similar functionality as ScheduleME and use location

information to help coordinate meetups. Tag - You’re It allows users to privately broadcast

2http://blendr.com/
3http://www.skout.com/
4https://www.glympse.com/
5http://owntracks.org/
6http://miataru.com/
7https://www.waze.com/
8https://itunes.apple.com/us/app/gps-plus-location-commute/id528698859
9https://itunes.apple.com/us/app/tag-youre-it/id829344553

54

their location and view a suggested route to meet with “tagged” friends. In PrivateMeetUp,

users do not share actual location information, but send approximate distances to points of

interest to their peers.

Table 4.1: Commercial & research location-based apps, showing the visibility within each app,
whether real-time location tracking is possible, the privacy techniques used to safeguard users’ loca-
tion information, type of log in access (F. Facebook, G. Google+, T. Twitter, FS. foursquare, O.
Others), and the underlining structure of data storage / communication. [20]

VISIBILITY LOG IN ACCESS FRAMEWORK

APP

NAME

(SHARING)TRACK-

ING

PRIVACY TECHNIQUES NEW S.N. STRUCTURE

C
O
M

M
E
R
C
IA

L

Blendr Public No Reveals inexact location Yes F. Centralized
Glympse F. T. Yes Time-based (can expire

early)
Yes F., T. Centralized

GPS
Plus

Private No Share past history (up to
24 hours old)

Device N/A Centralized

Miataru Private Yes Can use own server to store
data

Device N/A Decentralized

OwntracksPrivate Yes Can use own server to store
data

Device N/A Decentralized

Skout Public No Separate communities for
adults and teens

Yes F., G. Centralized

Tag Private No Send location and pri-
vately view route to
meetup

Yes F. Centralized

Waze F., T.,
FS.

Yes Send ETA via email/SMS Optional F. Centralized

R
E
S
E
A
R
C
H Private-

MeetUp
F. No Only disclose approximate

distance to a particular lo-
cation

N/A F. Decentralized

Schedule-
ME

None No individual private store,
question and answer
framework, group compu-
tation

Yes (email) N/A Decentralized

We now discuss the content of Table 4.1 according to the five factors just defined.

Visibility is inferred based on who can view a user’s location. Private indicates that only

contacts based on the device’s contact list are granted permission. Public visibility means

that any one using the app can view the user’s location (at some level of granularity). For

apps that allow social network contacts, but not the general public, to view a user’s location,

the social networks allowed are listed. Of the ten apps, Glympse, Waze, Owntracks, and

Miataru - be found allow others (as specified by the visibility column) to track a user’s

55

location. Glympse restricts the tracking privileges by time, with a maximum time limit of

four hours. As shown in the table, different apps have different means of authenticating users

when using their respective services. Some apps allow users to register a new account on

their platform while others allow users to use their social network profiles as an alternative

to creating a new account. Miataru - be found, Owntracks, and GPS Plus identify users by

their device IDs. Waze allows users to use their service anonymously. However, to share

their locations with contacts, the anonymous users would need to log in.

Since ScheduleME is built on top of openPDS, the key differentiator in the privacy

mechanisms is that ScheduleME does not allow either the app or contacts (as in peer-to-peer

communication) to view or track a user’s raw location data. Thus, unlike PrivateMeetUp and

Tag - You’re It, ScheduleME enables users to schedule meetups without requiring them to

reveal either their actual locations or points of interest. By either extending the functionality

or adding new features, ScheduleME can provide functionalities comparable to those of the

apps listed in the table.

• Skout and Blendr : unexpected or serendipitous discovery of users can be accomplished

by comparing the bounding boxes of users and alerting them when an overlap occurs.

• Waze and GPS Plus : traffic navigation can be simulated by collecting and using ad-

ditional sensor data (like activity, Wi-Fi, etc.). By combining such data from multiple

users, it is theoretically possible to simulate traffic in a crowd-sourced fashion.

• Glympse, Miataru - be found, and Owntracks : tracking of users can be simulated in a

privacy-preserving manner by randomly selecting a location from the bounding boxes

of the top locations visited by a user and collected over the past few days. This location

can be broadcast to the contacts as an approximate location where the user may be

found at this hour.

Thus, we see that it is plausible to extend ScheduleME and provide similar user expe-

riences and functionalities to those of other apps while keeping users’ data private.

56

4.4 Summary

This chapter has discussed the implementation of ScheduleME, with a particular emphasis

on the group computation functionality. The privacy mechanisms of ScheduleME were then

compared with those of other commercial and research-based apps. We showed how it was

feasible to create similar functionalities within ScheduleME without compromising the user’s

privacy.

57

58

Chapter 5

Implementation of MIT-FIT on

PrivacyMate

This chapter presents the MIT-FIT lab which was implemented as part of this thesis.

Through this lab, we demonstrate how to build a privacy-preserving fitness-related lab on

the MIT Living Labs project. The MIT Living Labs initiative is planning to release the

MIT-FIT lab in the coming months. MIT-FIT uses mobile and sensor data for perform-

ing individual and group computations in privacy-preserving ways. MIT-FIT differs from

other fitness apps and devices which store users’ data on the app provider’s servers and can

potentially share the data with third parties.

This chapter discusses the design decisions and technical details of the MIT-FIT lab

as well as a comparison of MIT-FIT with other commercial fitness-based apps. We discuss

how users can achieve privacy assurances on MIT-FIT without sacrificing the desired utility

obtained in other apps.

5.1 MIT-FIT Design

The MIT-FIT lab was conceived out of discussions involving some of the following ques-

tions for health and wellness: How can we better promote fitness and wellness? Is exercise

correlated with performance in other aspects of student/employees performance? What are

the patterns of use of MIT’s athletic facilities? The roundtable discussion further informed

59

our design and implementation decisions and helped us identify a few design and functional

requirements for the lab. Possible extensions to the lab are listed in Chapter 7 as future

work.

5.1.1 System Architecture

The system architecture of MIT-FIT is shown in Figure 5-1. MIT-FIT currently requires

the activity and location data for its functionalities. These data can be captured from

the mobile devices via Funf or potentially fed to the system from APIs provided by the

manufacturers of wearable devices. It is conceivable to collect additional types of fitness and

wellness data (such as calories burned during a workout) from the wearable devices. Each

participant’s PDS instance computes answers to questions requested by MIT-FIT through

openPDS’ Question and Answer framework. Individual and group computations of the

answers take place on and among the PDS instances of different participants. The results

of the computations (visualizations and recommendations) are then sent to MIT-FIT to be

displayed to the participant.

5.1.2 Goals

MIT-FIT aims to allow users to (i) track personal and community activity levels and (ii)

interact with others by sharing and subscribing to campus-wide fitness-related events.

MIT-FIT makes the following novel contributions to the research on participatory sens-

ing for fitness:

1. Enables privacy-preserving computations and visualizations of data in the context of

fitness. During and after computations, other participants and even the service itself

would not have access to any of the participant’s raw data.

2. Provides rudimentary spatio-temporal analytics. MIT-FIT delivers basic analytics that

are comparable to those offered by the mainstream fitness apps.

3. Motivates the need to investigate richer dimensions of Quantified Self [22]. Specifically,

MIT-FIT motivates quantifying activities, relationships, and places for fitness.

60

Figure 5-1: MIT-FIT system architecture.

5.2 MIT-FIT Implementation

5.2.1 Features

MIT-FIT aims to provides the following features to the MIT community (faculty, students,

and staff) to help them adopt or maintain a healthy and active lifestyle.

1. Analyze activity patterns by location and time Using the location and activ-

ity sensor data from the participant’s device, MIT-FIT identifies places and times of

high activity for that participant. These regions are then rendered using a heatmap

(Figure 5-2) while the times are displayed as a bar chart (Figure 5-4). MIT-FIT also

performs a group computation to determine aggregate places of high activity for all the

participants and renders the corresponding places in a separate heatmap (Figure 5-3).

2. Fitness-related recommendations Upon receiving a list of fitness-related events

from MIT’s recreational center, MIT-FIT can sort those events based on whether a

61

Figure 5-2: Locations of high activity for the
user.

Figure 5-3: Locations of high activity for all
users.

particular user is inherently active at that particular time or location. This sorted list

would result in personalized activity recommendations for the user. Figure 5-5 shows

the screenshot of such recommendations for a user.

5.3 Related Work

This section discusses how MIT-FIT differs from commercial fitness-related apps.

5.3.1 Factors used in comparison

We use the same format as in Chapter 4 to compare the privacy-preserving mechanisms of

MIT-FIT with other commercial apps. However, for the fitness-based quantified-self apps,

we can ignore Real-time location tracking and Framework structure in the comparison. Since

the field of quantified-self relies primarily on fetching as much sensor data as possible for

analyses, as expected, all the apps listed in Table 5.1 track users’ data. Also, the providers

of the apps inherently offer centralized solutions.

62

Figure 5-4: Frequency of high activity times for the user.

5.3.2 Comparison with MIT-FIT

Table 5.1 lists the commercial apps that provide fitness-related services. Fitbit1 and Pebble2

are primarily smart watches/devices that also offer supporting mobile apps. Nike+3, Moves4,

RunKeeper 5, and Strava6, on the other hand, are primarily mobile apps. Fitbit provides a

wide variety of tracking and visualization services for fitness, nutrition, and sleep. Pebble

and Moves primarily track movement, while Nike+, RunKeeper and Strava specialize in

running and biking activities.

Even though we ignore tracking and framework structure in this comparison, the follow-

ing are interesting exceptions to the status quo. Moves offers the following time durations

as options for users to turn off tracking: 1 hour, 3 hours, up till next charge, or completely.

Further, some fitness apps and devices such as Pebble, Moves, and Fitbit allow users to access

1http://www.fitbit.com/
2https://getpebble.com/
3https://secure-nikeplus.nike.com/plus/
4http://www.moves-app.com/
5http://runkeeper.com/
6http://www.strava.com/

63

Figure 5-5: Personalized recommendations of fitness-related events to users.

APIs or provide links to download their data.

Most of the apps that permit sharing user data and analyses on social networks enable

sharing on Facebook. Nike+ and RunKeeper also allow sharing on Twitter (with Nike+

further allowing users to share on Pinterest). Almost all apps allow users to register new

accounts to access their service. Pebble and Moves use the user’s device IDs to authenticate

the users and allow them to use their respective app or smart-device. Nike+, RunKeeper,

and Strava allow users to log in with their social network profiles.

Moves provides anonymous usage of the app, while Strava enables users to anonymize

their names by initializing their lastname in leaderboards. Additionally, Strava has the

option to only allow “Strava athletes” to follow and see photos, and only allow approved

followers to view activities on profile. These privacy features are available via Strava’s

“Enhanced Privacy” switch which is turned off by default. Pebble and Fitbit both provide

APIs to allow users to download and access their own data or to allow developers to provide

services for users who share their data. As expected, both Pebble and Fitbit have safeguards

in the form of well-defined policies for privacy. Additionally, Pebble allows developers to

64

APP VISIBILITY PRIVACY TECHNIQUES LOG IN ACCESS

NAME (SHARING) NEW S.N.

Fitbit F. T. policy safeguards for developer and API ac-
cess

Yes F. G.

Nike+ F. T. P. grouping to share data and setting up private
challenges

Yes F.

Pebble F. policy safeguards for developer and API ac-
cess

Device -

Moves Private can use app without account Device -
RunKeeper F. T. grouping to control sharing of data and anal-

yses
Yes F.

Strava F. “Enhanced Privacy” Yes F.
MIT-FIT None individual private store, question and answer

framework, group computation
Yes N/A

Table 5.1: Commercial & research quantified-self apps, showing the visibility within each apps,
the privacy techniques used to safeguard users’ location information, and the type of log in access
(F. Facebook, G. Google+, T. Twitter, FS. Foursquare, P. Pinterest, O. Others)

develop companion apps for the “Pebble appstore” and its policies cover this additional

scenario as well. While most apps allow sharing data and providing leaderboards, Nike+

allows users to create “events” (e.g., a 5k run) and share them privately with contacts on the

app. It thus provides this unique feature while taking privacy into consideration. Finally,

RunKeeper allows grouping of contacts (only me, friends, everyone) to help users selectively

share their data and analyses.

By either extending the functionality or adding new features, MIT-FIT can provide

similar functionalities to the apps listed in the table.

• Pebble, Moves, and Fitbit : since these apps provide an API to access users’ data, the

data generated and collected by them can be downloaded to users’ PDS instances and

similar analyses can be computed.

• Nike+, RunKeeper, and Strava: by using Android’s DetectedActivity class, we can

extend Funf to identify the type of activity a user is involved in (such as running,

walking, driving, etc.). It would then be feasible for MIT-FIT to identify and map a

user’s run, hike or bike ride.

65

Thus, we see that it is plausible to extend MIT-FIT and provide similar user experiences

and functionalities as other apps while keeping users’ data private.

5.4 Summary

This chapter has discussed the implementation of MIT-FIT, with a particular emphasis on

the system architecture. The privacy mechanisms of MIT-FIT were then compared with

those of other commercial apps. We showed how it was feasible to create similar functional-

ities within MIT-FIT without compromising the user’s privacy.

66

Chapter 6

User Experience with PrivacyMate

and MIT-FIT

This chapter describes how a user would interact with PrivacyMate and MIT-FIT. The

chapter starts with the various workflows a user might go through and then discusses the

effect of using PrivacyMate’s privacy mechanisms on MIT-FIT.

6.1 Workflows of User Experience

When interacting with PrivacyMate and MIT-FIT, users go through the following workflows:

the first time set-up (walkthrough) and subsequent setting update.

6.1.1 First time set-up (walkthrough)

When a lab is installed on the user’s device and PDS instance, the user is greeted with a

walkthrough that introduces the lab and guides the user through the process of creating his

or her access control preferences.

The walkthrough starts with a brief introduction explaining the goals and functionalities

of the installed lab. Users are then taken to the settings screen where they see the opt-in

to data collection and opt-in to data aggregation controls. They can select the data that

they would like the lab to use and indicate whether or not they would like to participate in

67

group computations performed by that lab. Next, they are taken to the context definition

screen. As shown in Figure 6-1, they see a list of pre-defined contexts (MIT and Alltime-

Everywhere). At this point, users can choose one of the following three options: create a

new context, edit or delete an existing context, or finish the walkthrough.

Figure 6-1: The context home screen showing the two pre-defined contexts “MIT” and “Alltime-
Everywhere” and the option to create new custom contexts.

• Create a new context: Users can create custom contexts by specifying their desired

temporal and spatial specifications for the context under which they are willing to let

the lab use their data. Users are first asked to specify times of day and days of the

week to indicate their temporal constraints. Next, if they choose to, they can specify

locations by selecting regions on a map to indicate their spatial constraints.

• Edit selected context: Users can edit the temporal and/or spatial specifications

for any given context (both pre-defined as well as user-defined). Though users cannot

delete either of the pre-defined contexts (MIT and Alltime-Everywhere), they can

68

delete any of the user-defined contexts. PrivacyMate has this restriction because a

preference should consist of both settings and context for the enforcement to work.

• Finish: If users indicate that they would like to finish the walkthrough, they are

redirected to the lab’s homepage.

6.1.2 Subsequent setting update

Figure 6-2: Menu beside each of the labs listed on the Living Labs app. The menu options currently
are: about, settings, and credits.

For subsequent access and use of the access control preferences, PrivacyMate provides

a drop-down menu (as shown in Figure 6-2) next to each lab’s name on the MIT Living

Lab home screen. After clicking on the “settings” item in the drop-down menu, users are

redirected to a workflow similar to the walkthrough, except that the first introductory page

describing the lab is not shown. The introductory page is still accessible for subsequent use

via the “About” and “Credits” items in the menu as shown in Figure 6-2.

69

6.2 Access Control Enforcement for MIT-FIT

After a user creates access control preferences during the walkthrough for the MIT-FIT lab,

openPDS enforces those preferences on the PDS instance. When the MIT-FIT lab (code)

on the user’s PDS instance asks “questions” of the server, these preferences are used as a

filter to determine whether a given location or activity data object is allowed to be used by

MIT-FIT. These checks are hidden from the users and, from their perspective, they only

view the results displayed by MIT-FIT.

Figure 6-3: High-activity locations for a user:
Alltime-Everywhere context

Figure 6-4: High-activity locations for a user:
Dorm context

In order to demonstrate the differences in functionality that different access control

preferences can cause, we create two preferences for a user and evaluate MIT-FIT on both.

Both preferences allow the required data (location and activity) to be collected and used.

However, one of them (preference1) uses the Alltime-Everywhere context, while the other

(preference2) uses the Dorm context. The MIT-FIT visualization of high-activity locations

is shown for both the preferences in Figures 6-3 (preference1) and 6-4 (preference2). As

can be observed from the screenshots, the more relaxed context (preference1) causes the lab

to obtain more data from the user’s PDS instance than the comparatively more restrictive

70

context (preference2). Further, note how the visualization obtained from the filter corre-

sponding to preference2 is centered around a specific location. This is because the spatial

specification of preference2 indicated that region as permissible (as shown in Figure 3-7).

Thus data collected by Funf when the user was present in other locations was blocked by

the filter corresponding to preference2 for the MIT-FIT lab.

6.3 Usability Consultation and Semi-Structured Inter-

views

We tested the usability of PrivacyMate over the following two phases: usability consultation

and semi-structured usability interviews.

Phase 1 – Usability consultation: We visited the MIT IS&T Usability team 1 for a

consultation about the usability of the user controls for privacy. Their overall suggestion was

to conduct a user study to understand the potential issues in the usability of the framework.

Phase 2 – Semi-structured usability interviews: We then conducted a few semi-

structured usability interviews.

6.3.1 Semi-structured usability interviews

The details of these interviews are presented next.

Goal

The goal of the semi-structured interviews was to better understand the usability of the user

controls for privacy and to obtain suggestions for improving them.

Procedure

We started the interviews with a verbal “walkthrough” of the lab to each participant. We

then asked them to perform three specific tasks. The participants were then asked to rate

their interaction with the framework when accomplishing each specific task. Their rating

1http://ist-prod-web-1.mit.edu/usability/

71

was based on a five-point Likert scale with the following options: Very difficult, Difficult,

Neutral, Easy, Very easy. They were then asked to justify their feedback for each rating.

Finally, we asked them for any final comments and feedback.

Figure 6-5: Five-point Lik-
ert scale ratings for task 1

Figure 6-6: Five-point Lik-
ert scale ratings for task 2

Figure 6-7: Five-point Lik-
ert scale ratings for task 3

Feedback

We now discuss the feedback we received for the three tasks during the semi-structured

interviews.

Task 1: Scenario: Suppose that you want to allow Social Health Tracker to collect and

use all required data. How would you accomplish this task?

Three participants mentioned that the “three-dot icon” to access the settings was am-

biguous. Most of them tried to access the settings by clicking on the Social Health Tracker

lab name present in the list of labs (see Figure 6-2). However, that action took them to the

home screen of the lab’s functionality and not the data permissions screen. After investigat-

ing the screen for sometime, most of the participants were able to figure out how to access

the data permissions and context screens. While performing task 1, a couple of participants

asked about the opt-in to data aggregation functionality. Participant P1 asked “Is it shar-

ing my data? I don’t want my data to be shared.” In addition to this additional control

present on the screen, the wording on the screen appeared to be unclear. Two participants

mentioned that they did not understand the wording. Participant P3 mentioned about not

willingly reading text on mobile devices unless required to. One suggestion was to make

the UI more intuitive to navigate and understand without requiring users to read and parse

the text. Participant P6, on the other hand, said that they “experienced very similar app

settings and therefore could do it.” Thus, depending on what the participants focused on,

72

they had varying experiences about usability of the data permissions screen and we received

a somewhat uniform distribution of feedback for this task (Figure 6-5).

Task 2: Scenario: Suppose that you only want Social Health Tracker to use your data

when you are at home. How would you accomplish this task?

Two participants asked if they could select more than one context for a given lab at

the same time. Two other participants mentioned that they are at home at different times

during the weekends compared to weekdays, but the UI does not allow them to indicate that.

The overall feedback about task 2 was that the concept of context was not directly apparent

and that no information was provided on the “Data Permissions” screen that users could

access and set their context after pressing the “Continue” button. Specifically, participant

P3 mentioned “... [context] is hidden. It can be discovered by accident or remembered.”

Participant P3 further mentioned a downside that the temporal-spatial parameter values of

the various contexts were not visible until the temporal and spatial screens were visited. The

lack of indication that the context created was indeed applied to the lab was also pointed out.

For a context’s spatial parameter, participant P5 mentioned that it “would be nice to give

an address and have the map drop a pin, [thereby doing] something similar to how people

find places on Google maps.” Further, participant P5 also mentioned that enabling the users

to specify the diameter of the location circle would be helpful. Thus, the majority of the

responses were “Neutral” (Figure 6-6) since creating the context of “home” was somewhat

usable but felt that the controls should be improved.

Task 3: Scenario: As you may have noticed, there are other apps available in addition

to Social Health Tracker. Suppose that you wanted to allow data collection and use by all

apps at the same time (instead of doing it app by app). How would you accomplish this task?

Task 3 about the global settings seemed to be more intuitive to the participants with

four of them saying that the task was “Very easy (Figure 6-7).” Participant P1 mentioned

that “this task was easier because I found Global Settings right at the beginning.” Thus,

the fixed sequence of tasks could have enabled some participants to accidentally discover the

Global Settings. Participant P2 liked this UI better than the one presented for the previous

tasks because “this [showed the] data collection and use [controls] on the same screen, which

is good.” Participant P4 found this task to be easier than the previous two because the

73

number of steps required to accomplish this task was less than what was needed in the

previous two tasks. An interesting observation made was that only participant P3 used the

“Turn on required” option while all the other participants used the “Turn on all” option

to turn on data collection and use for all the labs. Participant P5 mentioned that the task

itself was easy, but the controls were confusing because (i) no feedback about the action’s

success, and (ii) no specification about what data was being collected was provided after

the action was performed. Participant P3 commented that once “Turn off all” was selected,

there was no way to turn on one or two specific data probes except by visiting the individual

labs. Participant P3 mentioned about not knowing “what applications have what data”

since information about which labs needed those data was not presented.

6.4 Summary

This chapter has discussed the user interactions with PrivacyMate and MIT-FIT. It also

demonstrated the difference in the visualizations rendered by MIT-FIT when different con-

texts were defined. Finally, semi-structured usability interviews were presented along with

the feedback we received.

74

Chapter 7

Conclusion

This thesis has described a way for the MIT Living Lab project to incorporate user-

controllable privacy mechanisms for mobile personal data. Specifically, PrivacyMate accom-

plishes this task through its suite of tools via the opt-in to data collection, context definition,

and opt-in to data aggregation preferences and their subsequent enforcement. We also de-

scribed the roundtable discussion conducted to gather requirements for the development

of a fitness-related lab, MIT-FIT. The design and implementation of the ScheduleME and

MIT-FIT labs were then discussed. Finally, the MIT-FIT lab was tested to understand how

it would function with different types of context definitions. The MIT Living Lab team is

planning to eventually deploy PrivacyMate and MIT-FIT to the entire MIT community.

7.1 Future Work

Looking forward, the following improvements would be beneficial to PrivacyMate and MIT-

FIT:

• Users should be enabled to apply multiple contexts at the same time to a lab. This

would need careful checks for boundary conditions.

• Since labs can potentially inherit or extend the code of other labs, we need to investigate

the issue of loose coupling versus inheritance, especially with regards to data collection

and usage.

75

• Based on the roundtable feedback, we need to (i) investigate various means of forming

groups via dorms or housing and (ii) integrate data from other QS apps and devices

into openPDS and labs.

• Basing recommendations on relationships and places, rather than just activity, could

be investigated.

• MIT-FIT functionality might be improved by classifying and considering different types

of activities. The heatmaps and charts could then also be filtered based on the type of

activity.

• It would be good to conduct another usability study on a larger scale.

76

Chapter 8

Appendix

8.1 Requirements Gathering: Roundtable Question-

naire

Following are the questions that we selected and asked the focus group participants (see

Section 2.4 above):

1. Circle the top three words that convey the meaning of wellness to you. activity, fitness,

sleep, play, work, stress, health, productivity, well-being, mindfulness

(a) Look at the the list provided in the last page. Which of the quantified-self apps

or devices do you currently use or have used in the past? (circle those that apply)

(b) For what purpose(s) did you use those apps or devices? List name of the app/de-

vice and purpose.

2. What motivates you to use those apps or devices?

3. Describe how you are using those apps or devices today?

4. Have you stopped using any apps or devices? If so, why?

5. What kinds of privacy concerns do you have with self-tracking apps and devices?

77

6. Imagine it is 6 years from now, i.e., the year 2020. What would your perfect quantified-

self app or device look like and do?

1. Circle the top three words that convey the meaning of wellness to you. activity, fitness,

sleep, play, work, stress, health, productivity, well-being, mindfulness

2. Look at the the list provided in the last page. Have you ever thought about using any

of those quantified-self apps or devices? (circle those that apply)

3. What has stopped you from using a quantified-self app or device so far?

4. Suppose that a quantified-self app would be released to the MIT community in Fall

2014. What would incentivize you to use that app? Examples: financial, social, fitness

goals Please elaborate.

5. What are the kinds of privacy concerns you may have with self-tracking apps and

devices?

6. Imagine it is 6 years from now, i.e., the year 2020. What would your perfect quantified-

self app or device look like and do?

78

Type of QS object List of objects

Gadgets & Sensors Amiigo, Autographer, Automatic, Beddit, Bedscales, BodyMedia FIT,
CarePredict, Cubesensors , Fitbit, Green Goose, HAPIfork, iHealth,
Jawbone Up, Looxcie, Lumoback, Med Gadget, Metromile, Misfit
Shine, Memoto, Moov, Muse, Nike +, Sano Intelligence, Pebble Smart-
watch, Sensoria Smart Sock, Trace, Vicon Revue, W/ME, WakeMate,
Withings, Zendrive, Zeo

Apps Argus, Average Sleep, Bodywise, Cardiio, Digifit, Daytum, En-
domondo, Eventflow, Everyday, Ginger.io, Heyday, In Flow, In-
stant Heart Rate, ITrackMyTime, Kennedy, Lifelapse, Lume Personal
Tracker, Map My Fitness, MapMyRun, Moodpanda, Mealsnap, Mo-
mento, Moves, Mymee, Nudge - Healthy Living Score, One Second
Everyday, OptimizeMe, QuantLove, Quotidian, Quentiq, Reporter,
Rseven, RunKeeper, Saga, Shadow, Sleep bot, Sleep Genius, Sleep
Cycle, Sleep Time, Stress Check, Tableau Public, Tonic Self Care As-
sistant, Weight Record, Zen Log

Web Services Beeminder, Bedpost, Everylog, HonestBaby, Mercury App, Microsoft
HealthVault, Moodscope, RescueTime, Sen.se, Slife, Traqs.me, uMotif

Data Aggregation
Services & APIs

Bodytrack, Carepass, Exist.io, Fluxtream, Human/API, JoyMet-
rics, Kantify You, Manybots, Matchup.io, My Fitness Pal, Open
mHealth, ProjectAddapp, QuantifiedAPI, Sing.ly, SocialSafe, Sync-
metrics, ThinkUp, Tictrac, Zenobase

Smart Journals Day One, Diaro, Everyday.me, Memories: the Diary, Momento, Nar-
rato, Step

Table 8.1: Quantified-self apps, devices, etc. The list was accumulated from various sources.{123}

3http://lifestreamblog.com/lifelogging/
3https://play.google.com
3https://itunes.apple.com

79

80

Bibliography

[1] Debjanee Barua, Judy Kay, and Cécile Paris. Viewing and controlling personal sensor
data: what do users want? In Persuasive Technology, pages 15–26. Springer, 2013.

[2] Supriyo Chakraborty, Zainul Charbiwala, Haksoo Choi, Kasturi Rangan Raghavan, and
Mani B Srivastava. Balancing behavioral privacy and information utility in sensory data
flows. Pervasive and Mobile Computing, 8(3):331–345, 2012.

[3] Supriyo Chakraborty, Chenguang Shen, Kasturi Rangan Raghavan, Yasser Shoukry,
Matt Millar, and Mani Srivastava. ipshield: a framework for enforcing context-aware
privacy. In Proceedings of the 11th USENIX Conference on Networked Systems Design
and Implementation, pages 143–156. USENIX Association, 2014.

[4] Chris Clifton, Murat Kantarcioglu, Jaideep Vaidya, Xiaodong Lin, and Michael Y Zhu.
Tools for privacy preserving distributed data mining. ACM SIGKDD Explorations
Newsletter, 4(2):28–34, 2002.

[5] Yves-Alexandre de Montjoye, César A Hidalgo, Michel Verleysen, and Vincent D Blon-
del. Unique in the crowd: The privacy bounds of human mobility. Scientific reports, 3,
2013.

[6] Yves-Alexandre de Montjoye, Jordi Quoidbach, Florent Robic, and Alex Sandy Pent-
land. Predicting personality using novel mobile phone-based metrics. In Social Com-
puting, Behavioral-Cultural Modeling and Prediction, pages 48–55. Springer, 2013.

[7] Yves-Alexandre de Montjoye, Samuel S Wang, Alex Pentland, Dinh Tien Tuan Anh,
and Anwitaman Datta. On the trusted use of large-scale personal data. IEEE Data
Eng. Bull., 35(4):5–8, 2012.

[8] Daniel A Epstein, Alan Borning, and James Fogarty. Fine-grained sharing of sensed
physical activity: a value sensitive approach. In Proc. ACM Intl. Joint Conference on
Pervasive and Ubiquitous Computing, pages 489–498. ACM, 2013.

[9] Deborah Estrin and Ida Sim. Open mhealth architecture: an engine for health care
innovation. Science(Washington), 330(6005):759–760, 2010.

[10] Drew Fisher, Leah Dorner, and David Wagner. Short paper: location privacy: user
behavior in the field. In Proceedings of the second ACM workshop on Security and
privacy in smartphones and mobile devices, pages 51–56. ACM, 2012.

81

[11] Saikat Guha, Mudit Jain, and Venkata N Padmanabhan. Koi: A location-privacy
platform for smartphone apps. In Proc. of NSDI, pages 1–14, 2012.

[12] Samiul Hasan, Xianyuan Zhan, and Satish V Ukkusuri. Understanding urban human
activity and mobility patterns using large-scale location-based data from online social
media. In Proc. of ACM SIGKDD Workshop on Urban Computing, page 6, 2013.

[13] Tanzima Hashem, Mohammed Eunus Ali, Lars Kulik, Egemen Tanin, and Anthony
Quattrone. Protecting privacy for group nearest neighbor queries with crowdsourced
data and computing. In Proc. of ACM Ubicomp, pages 559–562, 2013.

[14] Eiji Hayashi, Oriana Riva, Karin Strauss, AJ Brush, and Stuart Schechter. Goldilocks
and the two mobile devices: going beyond all-or-nothing access to a device’s applica-
tions. In Proceedings of the Eighth Symposium on Usable Privacy and Security, page 2.
ACM, 2012.

[15] Sangmin Lee, Edmund L Wong, Deepak Goel, Mike Dahlin, and Vitaly Shmatikov.
πbox: a platform for privacy-preserving apps. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation}.

[16] John Lyle, Salvatore Monteleone, Shamal Faily, Davide Patti, and Fabio Ricciato. Cross-
platform access control for mobile web applications. In Policies for Distributed Systems
and Networks (POLICY), 2012 IEEE International Symposium on, pages 37–44. IEEE,
2012.

[17] Anastasios Noulas, Salvatore Scellato, Cecilia Mascolo, and Massimiliano Pontil. An
empirical study of geographic user activity patterns in foursquare. ICWSM, 11:70–573,
2011.

[18] Norma Saiph Savage, Maciej Baranski, Norma Elva Chavez, and Tobias Höllerer. Im
feeling loco: A location based context aware recommendation system. In Advances in
Location-Based Services, pages 37–54. Springer, 2012.

[19] Fuming Shih and Julia Boortz. Understanding peoples preferences for disclosing con-
textual information to smartphone apps. In Human Aspects of Information Security,
Privacy, and Trust, pages 186–196. Springer, 2013.

[20] Brian Sweatt, Sharon Paradesi, Ilaria Liccardi, Lalana Kagal, and Alex (Sandy) Pent-
land. Building privacy-preserving location-based apps. In 12th Annual Intl. Conference
on Privacy, Security and Trust. IEEE, 2014.

[21] Shomir Wilson, Justin Cranshaw, Norman Sadeh, Alessandro Acquisti, Lorrie Faith
Cranor, Jay Springfield, Sae Young Jeong, and Arun Balasubramanian. Privacy ma-
nipulation and acclimation in a location sharing application. In Proceedings of the
2013 ACM international joint conference on Pervasive and ubiquitous computing, pages
549–558. ACM, 2013.

[22] Gary Wolf, A Carmichael, and K Kelly. The quantified self. TED http://www. ted.
com/talks/gary wolf the quantified self. html, 2010.

82

	Introduction
	Motivation
	Related Work
	Contributions of this thesis
	Thesis Overview

	Existing Infrastructure
	MIT Living Lab Architecture
	openPDS
	MIT Mobile App
	DataHub

	A Closer Look at openPDS
	Question and Answer Framework
	Group Computation

	What's Missing?
	Requirements Gathering
	Procedure
	Participants
	Takeaways

	Summary

	PrivacyMate: User-Controllable Privacy Mechanisms for Living Labs
	Functional Architecture of PrivacyMate
	PrivacyMate's Privacy Mechanism
	Opt-in to Data Collection
	Opt-in to Data Aggregation
	Context Definition
	Preference Enforcement

	Tutorial: How to build a new lab on openPDS and PrivacyMate
	On the openPDS server
	On the MIT Mobile Living Lab App client

	Summary

	Implementation of ScheduleME on PrivacyMate
	ScheduleME Design: Goals
	ScheduleME Implementation: Group Computation
	Related Work
	Factors used in comparison
	Comparison with ScheduleME

	Summary

	Implementation of MIT-FIT on PrivacyMate
	MIT-FIT Design
	System Architecture
	Goals

	MIT-FIT Implementation
	Features

	Related Work
	Factors used in comparison
	Comparison with MIT-FIT

	Summary

	User Experience with PrivacyMate and MIT-FIT
	Workflows of User Experience
	First time set-up (walkthrough)
	Subsequent setting update

	Access Control Enforcement for MIT-FIT
	Usability Consultation and Semi-Structured Interviews
	Semi-structured usability interviews

	Summary

	Conclusion
	Future Work

	Appendix
	Requirements Gathering: Roundtable Questionnaire

